版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山西省運(yùn)城市鹽湖中學(xué)2021-2022學(xué)年高一數(shù)學(xué)理月考試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.下列四組中的函數(shù)f(x)與g(x),是同一函數(shù)的是()A.f(x)=ln(1﹣x)+ln(1+x),g(x)=ln(1﹣x2) B.f(x)=lgx2,g(x)=2lgxC.f(x)=?,g(x)= D.f(x)=,g(x)=x+1參考答案:A【考點(diǎn)】判斷兩個(gè)函數(shù)是否為同一函數(shù).【分析】根據(jù)兩個(gè)函數(shù)的定義域相同,對(duì)應(yīng)關(guān)系也相同,判斷它們是否為同一函數(shù)即可.【解答】解:對(duì)于A,f(x)=ln(1﹣x)+ln(1+x)=ln(1﹣x2)(﹣1<x<1),與g(x)=ln(1﹣x2)(﹣1<x<1)的定義域相同,對(duì)應(yīng)關(guān)系也相同,是同一函數(shù);對(duì)于B,f(x)=lgx2=2lg|x|(x≠0),與g(x)=2lgx(x>0)的定義域不同,不是同一函數(shù);對(duì)于C,f(x)=?=(x≥1),與g(x)=(x≤﹣1或x≥1)的定義域不同,不是同一函數(shù);對(duì)于D,f(x)==x+1(x≠1),與g(x)=x+1(x∈R)的定義域不同,不是同一函數(shù).故選:A.2.已知,是兩個(gè)不同的平面,是兩條不同的直線,下列命題中錯(cuò)誤的是(
)A.若∥,,,則B.若∥,,,則C.若,,,則⊥D.若⊥,,,,則參考答案:A【分析】根據(jù)平面和直線關(guān)系,依次判斷每個(gè)選項(xiàng)得到答案.【詳解】A.若,,,則如圖所示情況,兩直線為異面直線,錯(cuò)誤其它選項(xiàng)正確.故答案選A【點(diǎn)睛】本題考查了直線平面的關(guān)系,找出反例是解題的關(guān)鍵.3.設(shè),是兩條不同的直線,是一個(gè)平面,則下列命題正確的是(
)A.若,,則
B.若,,則C.若,,則
D.若,,則參考答案:B4.(5分)已知空間兩個(gè)點(diǎn)A,B的坐標(biāo)分別為A(1,2,2),B(2,﹣2,1),則|AB|=() A. 18 B. 12 C. D. 參考答案:C考點(diǎn): 空間兩點(diǎn)間的距離公式.專題: 空間位置關(guān)系與距離.分析: 根據(jù)兩點(diǎn)間的距離公式進(jìn)行計(jì)算即可.解答: ∵點(diǎn)A,B的坐標(biāo)分別為A(1,2,2),B(2,﹣2,1),∴|AB|==3.故選:C.點(diǎn)評(píng): 本題考查了空間直角坐標(biāo)系中兩點(diǎn)間的距離公式的應(yīng)用問題,是容易題目.5..在整數(shù)集Z中,被5除所得余數(shù)為k的所有整數(shù)組成一個(gè)“類”,記為,即給出四個(gè)結(jié)論:①,②,③,④整數(shù)屬于同一“類”,當(dāng)且僅當(dāng)是,其中正確結(jié)論的個(gè)數(shù)是
(
).1
.2
.3
.4參考答案:C略6.化簡(jiǎn)結(jié)果為(
)A.a B.b C. D.參考答案:A【分析】根據(jù)指數(shù)冪運(yùn)算法則進(jìn)行化簡(jiǎn)即可.【詳解】本題正確選項(xiàng):【點(diǎn)睛】本題考查指數(shù)冪的運(yùn)算,屬于基礎(chǔ)題.7.下列命題中正確的是(
)A.
B.
C.
D.參考答案:D對(duì)于選項(xiàng)A,由于不等式?jīng)]有減法法則,所以選項(xiàng)A是錯(cuò)誤的.對(duì)于選項(xiàng)B,如果c是一個(gè)負(fù)數(shù),則不等式要改變方向,所以選項(xiàng)B是錯(cuò)誤的.對(duì)于選項(xiàng)C,如果c是一個(gè)負(fù)數(shù),不等式則要改變方向,所以選項(xiàng)C是錯(cuò)誤的.對(duì)于選項(xiàng)D,由于此處的,所以不等式兩邊同時(shí)除以,不等式的方向不改變,所以選項(xiàng)D是正確的.
8.設(shè)二次函數(shù)f(x)=x2﹣bx+a(a,b∈R)的部分圖象如圖所示,則函數(shù)g(x)=lnx+2x﹣b的零點(diǎn)所在的區(qū)間()A. B. C. D.(2,3)參考答案:A【考點(diǎn)】函數(shù)的零點(diǎn)與方程根的關(guān)系.【分析】由二次函數(shù)的圖象確定出b的范圍,計(jì)算出g()和g(1)的值的符號(hào),從而確定零點(diǎn)所在的區(qū)間.【解答】解:結(jié)合二次函數(shù)f(x)=x2﹣bx+a的圖象知,f(0)=a∈(0,1),f(1)=1﹣b+a=0,∴b=a+1,∴b∈(1,2),∵g(x)=lnx+2x﹣b在(0,+∞)上單調(diào)遞增且連續(xù),g()=ln+1﹣b<0,g(1)=ln1+2﹣b=2﹣b>0,∴函數(shù)g(x)的零點(diǎn)所在的區(qū)間是(,1);故選:A.【點(diǎn)評(píng)】本題考查了二次函數(shù)的圖象與性質(zhì)以及函數(shù)零點(diǎn)的應(yīng)用,解題的關(guān)鍵是確定b的范圍.9.
(
)A、
B、
C、
D、參考答案:C10.已知集合A={x|x2﹣x﹣2<0},B=,在區(qū)間(﹣3,3)上任取一實(shí)數(shù)x,則x∈A∩B的概率為() A. B. C. D.參考答案:C【考點(diǎn)】幾何概型. 【分析】分別求解二次不等式及分式不等式可求集合A,B,進(jìn)而可求A∩B,由幾何概率的求解公式即可求解. 【解答】解:∵A={x|x2﹣x﹣2<0}=(﹣1,2), B==(﹣1,1), 所以A∩B={x|﹣1<x<1},所以在區(qū)間(﹣3,3)上任取一實(shí)數(shù)x, 則“x∈A∩B”的概率為=, 故選C. 【點(diǎn)評(píng)】本題主要考查了二次不等式、分式不等式的求解及與區(qū)間長(zhǎng)度有關(guān)的幾何概率的求解,屬于知識(shí)的簡(jiǎn)單應(yīng)用. 二、填空題:本大題共7小題,每小題4分,共28分11.(3分)已知集合A={﹣2,3,4m﹣4},集合B={3,m2}.若B?A,則實(shí)數(shù)m=
.參考答案:2考點(diǎn): 集合的包含關(guān)系判斷及應(yīng)用.專題: 計(jì)算題.分析: 根據(jù)子集的定義,可得若B?A,則B中元素均為A中元素,但m2=﹣2顯然不成立,故m2=4m﹣4,解方程可得答案.解答: ∵集合A={﹣2,3,4m﹣4},集合B={3,m2}.若B?A,則m2=4m﹣4,即m2﹣4m+4=(m﹣2)2=0解得:m=2故答案為:2點(diǎn)評(píng): 本題考查的知識(shí)點(diǎn)是集合的包含關(guān)系判斷及應(yīng)用,熟練掌握子集的定義是解答的關(guān)鍵.12.函數(shù)y=cosx的定義域?yàn)閇a,b],值域?yàn)閇﹣,1],則b﹣a的最小值為.參考答案:【考點(diǎn)】余弦函數(shù)的圖象.【分析】利用余弦函數(shù)的定義域和值域,余弦函數(shù)的圖象特征,求得b﹣a的最小值.【解答】解:∵函數(shù)y=cosx的定義域?yàn)閇a,b],值域?yàn)閇﹣,1],∴b﹣a最小時(shí),則函數(shù)y是單調(diào)函數(shù),且b=2kπ,k∈Z,故可以取a=2kπ﹣,故b﹣a的最小值為,故答案為:.13.已知函數(shù)f(x)=sin(ωx+φ)()的部分圖象如圖所示,那么ω=,φ=.參考答案:2,.【考點(diǎn)】由y=Asin(ωx+φ)的部分圖象確定其解析式.【專題】數(shù)形結(jié)合;轉(zhuǎn)化法;三角函數(shù)的圖像與性質(zhì).【分析】根據(jù)三角函數(shù)圖象確定函數(shù)的周期以及函數(shù)過定點(diǎn)坐標(biāo),代入進(jìn)行求解即可.【解答】解:函數(shù)的周期T=﹣=π,即,則ω=2,x=時(shí),f()=sin(2×+φ)=,即sin(+φ)=,∵|φ|<,∴﹣<φ<,則﹣<+φ<,則+φ=,即φ=,故答案為:.【點(diǎn)評(píng)】本題主要考查三角函數(shù)解析式的求解,根據(jù)三角函數(shù)的圖象確定函數(shù)的周期是解決本題的關(guān)鍵.14.函數(shù)為偶函數(shù),則實(shí)數(shù)
__.參考答案:15.若實(shí)數(shù)滿足:,則
.參考答案:;
解析:據(jù)條件,是關(guān)于的方程的兩個(gè)根,即的兩個(gè)根,所以;.16.如圖,在直四棱柱A1B1C1D1-ABCD中,當(dāng)?shù)酌嫠倪呅蜛BCD滿足條件_________時(shí),有A1B⊥B1D1.(注:填上你認(rèn)為正確的一種條件即可,不必考慮所有可能的情形.)參考答案:(答案不唯一)略17.已知集合,(),若集合是一個(gè)單元素集(其中Z是整數(shù)集),則a的取值范圍是_________.參考答案:三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.已知函數(shù),其中(Ⅰ)求的單調(diào)區(qū)間;(Ⅱ)若在上存在,使得成立,求a的取值范圍.參考答案:(1)見解析(2)試題分析:(1)函數(shù)的單調(diào)區(qū)間與導(dǎo)數(shù)的符號(hào)相關(guān),而函數(shù)的導(dǎo)數(shù)為,故可以根據(jù)的符號(hào)討論導(dǎo)數(shù)的符號(hào),從而得到函數(shù)的單調(diào)區(qū)間.(2)若不等式在上有解,那么在上,.但在上的單調(diào)性不確定,故需分三種情況討論.解析:(1),①當(dāng)時(shí),在上,在上單調(diào)遞增;②當(dāng)時(shí),在上;在上;所以在上單調(diào)遞減,在上單調(diào)遞增.綜上所述,當(dāng)時(shí),的單調(diào)遞增區(qū)間為,當(dāng)時(shí),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)若在上存在,使得成立,則在上的最小值小于.①當(dāng),即時(shí),由(1)可知在上單調(diào)遞增,在上的最小值為,由,可得,②當(dāng),即時(shí),由(1)可知在上單調(diào)遞減,在上的最小值為,由,可得;③當(dāng),即時(shí),由(1)可知在上單調(diào)遞減,在上單調(diào)遞增,在上的最小值為,因?yàn)?,所以,即,即,不滿足題意,舍去.綜上所述,實(shí)數(shù)的取值范圍為.點(diǎn)睛:函數(shù)的單調(diào)性往往需要考慮導(dǎo)數(shù)的符號(hào),通常情況下,我們需要把導(dǎo)函數(shù)變形,找出能決定導(dǎo)數(shù)正負(fù)的核心代數(shù)式,然后就參數(shù)的取值范圍分類討論.又不等式的恒成立問題和有解問題也常常轉(zhuǎn)化為函數(shù)的最值討論,比如:“在上有解”可以轉(zhuǎn)化為“在上,有”,而“在恒成立”可以轉(zhuǎn)化為“在上,有”.19.已知函數(shù)(1)求與的值;
(2)若,求a的值.參考答案:(1)
---------------------2分
------------------------------------5分
(2)當(dāng)時(shí), -----------------------------------------------------------7分當(dāng)時(shí),
----------------------------------------------9分當(dāng)時(shí),(舍去)-----------------------------------------11分綜上,或
--------------------------------------12分20.在等差數(shù)列{an}中,,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),,且,.(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;(2)令,設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn,求()的最大值與最小值.參考答案:(1),;(2)的最大值是,最小值是.試題分析:(1)由條件列關(guān)于公差與公比方程組,解得,,再根據(jù)等差與等比數(shù)列通項(xiàng)公式求通項(xiàng)公式(2)化簡(jiǎn)可得,再根據(jù)等比數(shù)列求和公式得,結(jié)合函數(shù)單調(diào)性,可確定其最值試題解析:(1)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,則解得,,所以,.(2)由(1)得,故,當(dāng)為奇數(shù)時(shí),,隨的增大而減小,所以;當(dāng)為偶數(shù)時(shí),,隨的增大而增大,所以,令,,則,故在時(shí)是增函數(shù).故當(dāng)為奇數(shù)時(shí),;當(dāng)為偶數(shù)時(shí),,綜上所述,的最大值是,最小值是.21.設(shè)二次函數(shù)f(x)=x2+ax+b(a、b∈R)(1)當(dāng)b=+1時(shí),求函數(shù)f(x)在上的最小值g(a)的表達(dá)式.(2)若方程f(x)=0有兩個(gè)非整數(shù)實(shí)根,且這兩實(shí)數(shù)根在相鄰兩整數(shù)之間,試證明存在整數(shù)k,使得|f(k)|≤.參考答案:【考點(diǎn)】二次函數(shù)的性質(zhì).【專題】分類討論;數(shù)學(xué)模型法;函數(shù)的性質(zhì)及應(yīng)用.【分析】(1)求出二次函數(shù)的對(duì)稱軸方程,討論對(duì)稱軸和區(qū)間的關(guān)系,運(yùn)用函數(shù)的單調(diào)性即可得到最小值;(2)設(shè)m<x1<x2<m+1,m為整數(shù).分類討論k的存在性,綜合討論結(jié)果,可得答案.【解答】解:(1)當(dāng)b=+1時(shí),f(x)=(x+)2+1,對(duì)稱軸為x=﹣,當(dāng)a≤﹣2時(shí),函數(shù)f(x)在上遞減,則g(a)=f(1)=+a+2;當(dāng)﹣2<a≤2時(shí),即有﹣1≤﹣<1,則g(a)=f(﹣)=1;當(dāng)a>2時(shí),函數(shù)f(x)在上遞增,則g(a)=f(﹣1)=﹣a+2.綜上可得,g(a)=…(2)設(shè)m<x1<x2<m+1,m為整數(shù).則△=a2﹣4b>0,即b<,①當(dāng)﹣∈(m,m+]
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二四年緊急物資危險(xiǎn)品運(yùn)輸合同范本3篇
- 二零二五年度健康養(yǎng)生產(chǎn)品試用服務(wù)協(xié)議4篇
- 二零二五年度標(biāo)識(shí)牌標(biāo)識(shí)牌安裝與維護(hù)合同3篇
- 二零二五年度智能穿戴設(shè)備核心零件定制合同3篇
- 二零二四年度學(xué)校食堂食品安全保障與食材采購(gòu)合同3篇
- 2025年度廚師實(shí)習(xí)培訓(xùn)聘用合同4篇
- 2025至2031年中國(guó)高溫抗黃變劑行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2031年中國(guó)路面養(yǎng)護(hù)車行業(yè)投資前景及策略咨詢研究報(bào)告
- 實(shí)時(shí)動(dòng)態(tài)資源分配技術(shù)-深度研究
- 2025年度大學(xué)宿舍樓維修保養(yǎng)與設(shè)備更新服務(wù)承包協(xié)議4篇
- 冷庫(kù)制冷負(fù)荷計(jì)算表
- 肩袖損傷護(hù)理查房
- 設(shè)備運(yùn)維管理安全規(guī)范標(biāo)準(zhǔn)
- 辦文辦會(huì)辦事實(shí)務(wù)課件
- 大學(xué)宿舍人際關(guān)系
- 2023光明小升初(語(yǔ)文)試卷
- GB/T 14600-2009電子工業(yè)用氣體氧化亞氮
- GB/T 13234-2018用能單位節(jié)能量計(jì)算方法
- 申請(qǐng)使用物業(yè)專項(xiàng)維修資金征求業(yè)主意見表
- 房屋買賣合同簡(jiǎn)單范本 房屋買賣合同簡(jiǎn)易范本
- 無抽搐電休克治療規(guī)范
評(píng)論
0/150
提交評(píng)論