版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Chapter1LimitsandTheirPropertiesLimits
Theword“l(fā)imit”isusedineverydayconversationtodescribetheultimatebehaviorofsomething,asinthe“l(fā)imitofone’sendurance”orthe“l(fā)imitofone’spatience.”Inmathematics,theword“l(fā)imit”hasasimilarbutmoreprecisemeaning.
Supposeyoudrive200miles,andittakesyou4hours.Thenyouraveragespeedis:Ifyoulookatyourspeedometerduringthistrip,itmightread65mph.Thisisyourinstantaneousspeed.1.1RatesofChangeandLimitsArockfallsfromahighcliff.Thepositionoftherockisgivenby:After2seconds:averagespeed:Whatistheinstantaneousspeedat2seconds?1.1RatesofChangeandLimitsforsomeverysmallchangeintwhereh=someverysmallchangeintWecanusetheTI-84toevaluatethisexpressionforsmallerandsmallervaluesofh.1.1RatesofChangeandLimits180164.16.00164.016.000164.0016.0000164.0002Wecanseethatthevelocityapproaches64ft/secashbecomesverysmall.Wesaythatthevelocityhasalimitingvalueof64ashapproacheszero.(Notethathneveractuallybecomeszero.)1.1RatesofChangeandLimitsThelimitashapproacheszero:01.1RatesofChangeandLimitsDefinition:LimitLetcandLberealnumbers.Thefunction
fhaslimitLasxapproachesc
if,foranygivenpositivenumberε,thereisapositivenumberδsuchthatforallx,1.1RatesofChangeandLimitsaLfDNE=DoesNotExistafL1L21.1RatesofChangeandLimitsDefinition:OneSidedLimitsLeft-HandLimit:ThelimitoffasxapproachesafromtheleftequalsLisdenotedRight-HandLimit:ThelimitoffasxapproachesafromtherightequalsLisdenoted1.1RatesofChangeandLimits1.1RatesofChangeandLimitsDefinition:Limitifandonlyif
and1.1RatesofChangeandLimitsDNE=DoesNotExistPossibleLimitSituationsafaf1.1RatesofChangeandLimits123412Atx=1:lefthandlimitrighthandlimitvalueofthefunction
doesnotexistbecausetheleftandrighthandlimitsdonotmatch!1.1RatesofChangeandLimitsAtx=2:lefthandlimitrighthandlimitvalueofthefunctionbecausetheleftandrighthandlimitsmatch.1234121.1RatesofChangeandLimitsAtx=3:lefthandlimitrighthandlimitvalueofthefunctionbecausetheleftandrighthandlimitsmatch.1234121.1RatesofChangeandLimitsLimitsGivenafunctionf(x),ifxapproaching3causesthefunctiontotakevaluesapproaching(orequalling)someparticularnumber,suchas10,thenwewillcall10thelimitofthefunctionandwriteInpractice,thetwosimplestwayswecanapproach3arefromtheleftorfromtheright.
LimitsForexample,thenumbers2.9,2.99,2.999,...approach3fromtheleft,whichwedenotebyx→3–,andthenumbers3.1,3.01,3.001,...approach3fromtheright,denotedbyx→3+.Suchlimitsarecalledone-sidedlimits.UsetablestofindExample1–FINDINGALIMITBYTABLES
Solution:Wemaketwotables,asshownbelow,onewithxapproaching3fromtheleft,andtheotherwithxapproaching3fromtheright.20Limits
IMPORTANT!Thistableshowswhatf(x)isdoingasxapproaches3.OrwehavethelimitofthefunctionasxapproachesWewritethisprocedurewiththefollowingnotation.x22.92.992.99933.0013.013.14f(x)89.89.989.998?10.00210.0210.212
Def:WewriteIfthefunctionalvalueoff(x)isclosetothesinglerealnumberLwheneverxiscloseto,butnotequalto,c.(oneithersideofc).
orasx→c,thenf(x)→L310HLimitsAsyouhavejustseenthegoodnewsisthatmanylimitscanbeevaluatedbydirectsubstitution.22LimitPropertiesTheserules,whichmaybeprovedfromthedefinitionoflimit,canbesummarizedasfollows. Forfunctionscomposedofaddition,subtraction,multiplication,division,powers,root,limitsmaybeevaluatedbydirectsubstitution,providedthattheresultingexpressionisdefined.Examples–FINDINGLIMITSBYDIRECTSUBSTITUTIONSubstitute4forx.Substitute6forx.Examples–FINDINGLIMITSBYDIRECTSUBSTITUTIONExample1FindExample2Find
Somealgebraicrulesoflimits1Example
Somealgebraicrulesoflimits2ExampleSomealgebraicrulesoflimits3ExampleExample3:Find
Example4Findifyoupluginsomeverysmallvaluesfor,youwillseethisfunctionapproaches.Anditdoes'ntmatterwhetherispositiveornegative,youstillget,lookatthegraphof
Thedenominatorispositiveinbothcases,
sothelimitisthesame.Example5
Becausetheright-handlimitisnotequaltotheleft-handlimit,thelimitdoesnotexist.Therearesomeveryimportantpointsthatweneedtoemphasizefromthelasttwoexamples.1)Iftheleft-handlimitofafunctionisnotequaltotheright-handlimitofthefunction,thenthelimitdoesnotexist.2)Alimitequaltoinfinityisnotthesameasalimitthatdoesnotexist,butsometimesyouwillseetheexpression"nolimit",whichservesbothpurposes.If,thelimit,technically,doesnotexist.3)Ifkisapositiveconstant,thenanddoesnotexist.4)Ifkisapositiveconstant,thenandExample6:Find
As
getsbiggerandbigger,thevalueofthefunctiongetssmallerandsmaller.Therefore,Example7:Find
It'sthesamesituationastheoneinExample6;asdecrease(approachesnegativeinfinity),thevalueofthefunctionincrease(approachesaero).Wewritehis,Somealgebraicrulesoflimits4Example8Find
Whenyouhavevariablesinboththetopandbottom,youcan'tjustplugintotheexpression.Youwillget.Wesolvethisbyusingthefollowingtechnique:Whenanexpressionconsistsofapolynomialsdividedbyanotherpolynomials,divideeachtermofthenumeratorandthedenominatorbythehighestpowerofthatappearsintheexpression.Thehighestpowerofinthiscaseis,sowedivideeverytermintheexpression(bothtopandbottom)by,likeso:Nowwhenwetalkthelimit,thetwotermscontainingapproachzero.We'releftwith.
Example9:FindDivideezchtermby.Youget:
Example10:FindDivideezchtermby.
Theotherpowersdon'tmatter,becausethey'reallgoingtodisappear.Nowwehavethreenewrulesforevaluatingthelimitofarationalexpressionasapproachesinfinity:1)Ifthehighestpowerofinarationalexpressionisinthenumerator,thenthelimitasapproachesinfinityisinfinity.Example:2)Ifthehighestpowerofinarationalexpressionisinthedenominator,thenthelimitasapproachesinfinityiszero.Example:3)Ifthehighestpowerofinarationalexpressionisthesameinboththenumeratoranddenominator,thenthelimitasapproachesinfinityisthecoefficientofthehighestterminthenumratordividedbythecoefficientofthehighestterminthedenomiator.Example:1.2LimitsoftrigonometricfunctionsRuleNo.1:Thismayseemstrange,butifyoulookatthegraphsoftheyhaveapproximatelythesameslopeneartheorigin(asgetsclosertozero).Sinceandthesineofareaboutthesameasapproacheszero,theirquotientwillbeveryclosetoone.Furthermore,because(reviewcosinevaluesifyoudon'tgetthis!),weknowthatNowwewillfindasecondrule.Let'sevaluatethelimitFirst,multiplythetopandbottomby.
Weget:
Nowsimplifythelimitto:Next,wecanusethetrigonometricidentityandrewritethelimitas:Now,breakthisintotwolimits:Thefirstlimitis-1(seeRuleNo.1)andthesecondis0,sothelimitis0.RuleNo.2:Example11:FindExample12:FindRuleNo.3:RuleNo.4:Example13:FindProblem1.FindProblem2.FindProblem3.FindProblem4.FindProblem5.FindProblem6.FindProblem7.FindTheorem1.2PropertiesofLimitsTheorem1.3LimitsofPolynomialandRationalFunctionsUseyourcalculatortodeterminethefollowing:(a)(b)1.2Limitsoftrigonometricfunctions1DNESupposethatcisaconstantandthefollowinglimitsexist2.1RatesofChangeandLimitsSupposethatcisaconstantandthefollowinglimitsexist2.1RatesofChangeandLimitswherenisapositiveinteger.wherenisapositiveinteger.wherenisapositiveinteger.wherenisapositiveinteger.2.1RatesofChangeandLimitsEvaluatethefollowinglimits.Justifyeachstepusingthelawsoflimits.16-5/4262.1RatesofChangeandLimitsIffisarationalfunctionorcomplex:Eliminatecommonfactors.Performlongdivision.Simplifythefunction(ifacomplexfraction)Ifradicalsexist,rationalizethenumeratorordenominator.Ifabsolutevaluesexist,useone-sidedlimitsandthefollowingproperty.2.1RatesofChangeandLimits3/2DNE1/2DNE2.1RatesofChangeandLimitsTheoremIff(x)g(x)whenxisneara(exceptpossiblyata)andthelimitsoffandgbothexistasxapproachesa,then
2.1RatesofChangeandLimitsTheSqueeze(Sandwich)TheoremIff(x)g(x)h(x)whenxisneara(exceptpossiblyata)andthen2.1RatesofChangeandLimitsShowthat:Themaximumvalueofsineis1,soTheminimumvalueofsineis-1,soSo:2.1RatesofChangeandLimitsBythesandwichtheorem:2.1RatesofChangeandLimits2.1RatesofChangeandLimitsTherefore,2.1RatesofChangeandLimitssimplifyanddividebysinθ2.1RatesofChangeandLimits2.1RatesofChangeandLimitsP(cos,sin)Q(1,0)Thenotationmeansthatthevaluesoff(x)canbemadearbitrarilylarge(aslargeasweplease)bytakingxsufficientlyclosetoa(oneitherside)butnotequaltoa.2.2LimitsInvolvingInfinityafVerticalAsymptote2.2LimitsInvolvingInfinityVerticalAsymptoteThelinex=aiscalledaverticalasymptoteofthecurvey=f(x)ifatleastoneofthefollowingstatementsistrue:2.2LimitsInvolvingInfinityf(x)=lnxhasaverticalasymptoteatx=0sincef(x)=tanxhasaverticalasymptoteatx=/2since2.2LimitsInvolvingInfinity2.2LimitsInvolvingInfinity-∞x=3x=1DeterminetheequationsoftheverticalasymptotesofFindthelimitLetfbeafunctiondefinedonsomeinterval(a,∞).Thenmeansthatthevalueoff(x)canbemadeasclosetoLaswelikebytakingxsufficientlylarge.2.2LimitsInvolvingInfinityHorizontalAsymptoteLf2.2LimitsInvolvingInfinity2.2LimitsInvolvingInfinityDefinitionEndBehaviorModelSupposethatfisarationalfunctionasfollows:HorizontalAsymptoteTheliney=Liscalledahorizontalasymptoteofthecurvey=f(x)ifeitheror2.2LimitsInvolvingInfinityf(x)=exhasahorizontalasymptoteaty=0since2.2LimitsInvolvingInfinityIfnisapositiveinteger,then2.2LimitsInvolvingInfinityFindthelimit 2.2LimitsInvolvingInfinity-1/32/31/3Findthelimit 2.2LimitsInvolvingInfinityUsesqueezetheorem2.2LimitsInvolvingInfinityAfunctioniscontinuousatapointifthelimitisthesameasthevalueofthefunction.Thisfunctionhasdiscontinuitiesatx=1andx=2.Itiscontinuousatx=0andx=4,becausetheone-sidedlimitsmatchthevalueofthefunction1234122.3ContinuityDefinition:ContinuityAfunctioniscontinuousatanumberaifThatis,1. f(a)isdefined2. exists3. 2.3ContinuityDefinition:OneSidedContinuityAfunctionfiscontinuousfromtherightatanumberaifandfiscontinuousfromtheleftataif2.3Continuity1.Removablediscontinuity2.3Continuity2.Infinitediscontinuity2.3Continuity3.Jumpdiscontinuity2.3Continuity4.Oscillatingdiscontinuity2.3ContinuityDefinition:ContinuityOnAnIntervalAfunctionfiscontinuousonanintervalifitiscontinuousateverynumberintheinterval.(Iffisdefinedononesideofanendpointoftheinterval,weunderstandcontinuousattheendpointstomeancontinuousfromtherightorcontinuousfromtheleft).2.3ContinuityTheorem
f+g
f–g
cf
fg
f/gifg(a)0
f(g(x))Iffandgarecontinuousataandcisaconstant,thenthefollowingfunctionsarealsocontinuousata:2.3ContinuityTheoremAnypolynomialiscontinuouseverywhere;thatis,itiscontinuouson=(-∞,∞).Anyrationalfunctioniscontinuouswheneveritisdefined;thatis,itiscontinuousonitsdomain.2.3ContinuityAnyofthefollowingtypesoffunctionsarecontinuousateverynumberintheirdomain:Polynomials;RationalFunctions,RootFunctions;TrigonometricFunctions;InverseTrigonometricFunctions;ExponentialFunctions;andLogarithmicFunctions.2.3ContinuityIffiscontinuousatband ,then .Inotherwords,2.3ContinuityIfgiscontinuousataandfiscontinuousatg(a),thenthecompositefunctionf(g(x))iscontinuousata.2.3ContinuityTheIntermediateValueTheoremSupposethatfiscontinuousontheclosedinterval[a,b]andletNbeanynumberbetweenf(a)andf(b).Thenthereexistsanumbercin(a,b)suchthatf(c)=N.afbf(a)f(b)cf(c)=N2.3ContinuityUsetheIntermediateValueTheoremtoshowthatthereisarootofthegivenequationinthespecifiedinterval.2.3ContinuityGraphContinuousatx=0?
GraphContinuousatx=0?00yesundefined0noundefinedDNEnoundefined1no00yesundefined1noundefinedDNEno0DNEnoundefined0noDefinition:LimitLetcandLberealnumbers.Thefunction
fhaslimitLasxapproachesc
if,foranygivenpositivenumberε,thereisapositivenumberδsuchthatforallx,2.3ContinuitySolutionSetc=1andf(x)=5x-3andL=2.Foranygiven>0,thereexistsa>0suchthat0<|x-1|<whenever|f(x)-2|<2.3Continuity|(5x-3)-2|<|5x-5|<5|x-1|<|x-1|</5Soif=/51-11+2+2-22.3ContinuitySolutionSetc=2andf(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年個人舊車轉(zhuǎn)讓協(xié)議范本
- 2024高效化妝品委托加工協(xié)議范例
- 事業(yè)單位考試計算機基礎(chǔ)知識大綱和試題
- 2024年度醫(yī)療用品購銷協(xié)議模板
- 2024年度住宅樓施工項目協(xié)議目錄
- 2024年股票投資合作協(xié)議模板
- 2024年重慶市區(qū)住宅租賃協(xié)議
- 2024年軟件服務(wù)行業(yè)協(xié)議樣本
- 2024專項彩妝產(chǎn)品代理銷售協(xié)議
- 文書模板-《臨時勞務(wù)安全免責協(xié)議書》
- 20222023學(xué)年浙江省寧波市鄞州實驗中學(xué)八年級(上)期中語文試卷(解析)
- 人教版數(shù)學(xué)二年級下冊德育滲透教案《統(tǒng)計》例2教學(xué)設(shè)計
- 超越指標:存量時代降本增效的利器
- 《中小學(xué)書法教育指導(dǎo)綱要》解讀
- 住院醫(yī)師規(guī)范化培訓(xùn)臨床技能核課件
- 青島版五四制五年級上冊數(shù)學(xué)應(yīng)用題216道
- 工程造價鑒定十大要點與案例分析
- 2024年金融行業(yè)發(fā)展趨勢
- 印刷設(shè)計行業(yè)檔案管理制度完善
- 地熱資源勘查與開發(fā)利用規(guī)劃編制規(guī)程
- 三年級上海市滬版英語第一學(xué)期上學(xué)期期中考試試卷
評論
0/150
提交評論