版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Chapter1LimitsandTheirPropertiesLimits
Theword“l(fā)imit”isusedineverydayconversationtodescribetheultimatebehaviorofsomething,asinthe“l(fā)imitofone’sendurance”orthe“l(fā)imitofone’spatience.”Inmathematics,theword“l(fā)imit”hasasimilarbutmoreprecisemeaning.
Supposeyoudrive200miles,andittakesyou4hours.Thenyouraveragespeedis:Ifyoulookatyourspeedometerduringthistrip,itmightread65mph.Thisisyourinstantaneousspeed.1.1RatesofChangeandLimitsArockfallsfromahighcliff.Thepositionoftherockisgivenby:After2seconds:averagespeed:Whatistheinstantaneousspeedat2seconds?1.1RatesofChangeandLimitsforsomeverysmallchangeintwhereh=someverysmallchangeintWecanusetheTI-84toevaluatethisexpressionforsmallerandsmallervaluesofh.1.1RatesofChangeandLimits180164.16.00164.016.000164.0016.0000164.0002Wecanseethatthevelocityapproaches64ft/secashbecomesverysmall.Wesaythatthevelocityhasalimitingvalueof64ashapproacheszero.(Notethathneveractuallybecomeszero.)1.1RatesofChangeandLimitsThelimitashapproacheszero:01.1RatesofChangeandLimitsDefinition:LimitLetcandLberealnumbers.Thefunction
fhaslimitLasxapproachesc
if,foranygivenpositivenumberε,thereisapositivenumberδsuchthatforallx,1.1RatesofChangeandLimitsaLfDNE=DoesNotExistafL1L21.1RatesofChangeandLimitsDefinition:OneSidedLimitsLeft-HandLimit:ThelimitoffasxapproachesafromtheleftequalsLisdenotedRight-HandLimit:ThelimitoffasxapproachesafromtherightequalsLisdenoted1.1RatesofChangeandLimits1.1RatesofChangeandLimitsDefinition:Limitifandonlyif
and1.1RatesofChangeandLimitsDNE=DoesNotExistPossibleLimitSituationsafaf1.1RatesofChangeandLimits123412Atx=1:lefthandlimitrighthandlimitvalueofthefunction
doesnotexistbecausetheleftandrighthandlimitsdonotmatch!1.1RatesofChangeandLimitsAtx=2:lefthandlimitrighthandlimitvalueofthefunctionbecausetheleftandrighthandlimitsmatch.1234121.1RatesofChangeandLimitsAtx=3:lefthandlimitrighthandlimitvalueofthefunctionbecausetheleftandrighthandlimitsmatch.1234121.1RatesofChangeandLimitsLimitsGivenafunctionf(x),ifxapproaching3causesthefunctiontotakevaluesapproaching(orequalling)someparticularnumber,suchas10,thenwewillcall10thelimitofthefunctionandwriteInpractice,thetwosimplestwayswecanapproach3arefromtheleftorfromtheright.
LimitsForexample,thenumbers2.9,2.99,2.999,...approach3fromtheleft,whichwedenotebyx→3–,andthenumbers3.1,3.01,3.001,...approach3fromtheright,denotedbyx→3+.Suchlimitsarecalledone-sidedlimits.UsetablestofindExample1–FINDINGALIMITBYTABLES
Solution:Wemaketwotables,asshownbelow,onewithxapproaching3fromtheleft,andtheotherwithxapproaching3fromtheright.20Limits
IMPORTANT!Thistableshowswhatf(x)isdoingasxapproaches3.OrwehavethelimitofthefunctionasxapproachesWewritethisprocedurewiththefollowingnotation.x22.92.992.99933.0013.013.14f(x)89.89.989.998?10.00210.0210.212
Def:WewriteIfthefunctionalvalueoff(x)isclosetothesinglerealnumberLwheneverxiscloseto,butnotequalto,c.(oneithersideofc).
orasx→c,thenf(x)→L310HLimitsAsyouhavejustseenthegoodnewsisthatmanylimitscanbeevaluatedbydirectsubstitution.22LimitPropertiesTheserules,whichmaybeprovedfromthedefinitionoflimit,canbesummarizedasfollows. Forfunctionscomposedofaddition,subtraction,multiplication,division,powers,root,limitsmaybeevaluatedbydirectsubstitution,providedthattheresultingexpressionisdefined.Examples–FINDINGLIMITSBYDIRECTSUBSTITUTIONSubstitute4forx.Substitute6forx.Examples–FINDINGLIMITSBYDIRECTSUBSTITUTIONExample1FindExample2Find
Somealgebraicrulesoflimits1Example
Somealgebraicrulesoflimits2ExampleSomealgebraicrulesoflimits3ExampleExample3:Find
Example4Findifyoupluginsomeverysmallvaluesfor,youwillseethisfunctionapproaches.Anditdoes'ntmatterwhetherispositiveornegative,youstillget,lookatthegraphof
Thedenominatorispositiveinbothcases,
sothelimitisthesame.Example5
Becausetheright-handlimitisnotequaltotheleft-handlimit,thelimitdoesnotexist.Therearesomeveryimportantpointsthatweneedtoemphasizefromthelasttwoexamples.1)Iftheleft-handlimitofafunctionisnotequaltotheright-handlimitofthefunction,thenthelimitdoesnotexist.2)Alimitequaltoinfinityisnotthesameasalimitthatdoesnotexist,butsometimesyouwillseetheexpression"nolimit",whichservesbothpurposes.If,thelimit,technically,doesnotexist.3)Ifkisapositiveconstant,thenanddoesnotexist.4)Ifkisapositiveconstant,thenandExample6:Find
As
getsbiggerandbigger,thevalueofthefunctiongetssmallerandsmaller.Therefore,Example7:Find
It'sthesamesituationastheoneinExample6;asdecrease(approachesnegativeinfinity),thevalueofthefunctionincrease(approachesaero).Wewritehis,Somealgebraicrulesoflimits4Example8Find
Whenyouhavevariablesinboththetopandbottom,youcan'tjustplugintotheexpression.Youwillget.Wesolvethisbyusingthefollowingtechnique:Whenanexpressionconsistsofapolynomialsdividedbyanotherpolynomials,divideeachtermofthenumeratorandthedenominatorbythehighestpowerofthatappearsintheexpression.Thehighestpowerofinthiscaseis,sowedivideeverytermintheexpression(bothtopandbottom)by,likeso:Nowwhenwetalkthelimit,thetwotermscontainingapproachzero.We'releftwith.
Example9:FindDivideezchtermby.Youget:
Example10:FindDivideezchtermby.
Theotherpowersdon'tmatter,becausethey'reallgoingtodisappear.Nowwehavethreenewrulesforevaluatingthelimitofarationalexpressionasapproachesinfinity:1)Ifthehighestpowerofinarationalexpressionisinthenumerator,thenthelimitasapproachesinfinityisinfinity.Example:2)Ifthehighestpowerofinarationalexpressionisinthedenominator,thenthelimitasapproachesinfinityiszero.Example:3)Ifthehighestpowerofinarationalexpressionisthesameinboththenumeratoranddenominator,thenthelimitasapproachesinfinityisthecoefficientofthehighestterminthenumratordividedbythecoefficientofthehighestterminthedenomiator.Example:1.2LimitsoftrigonometricfunctionsRuleNo.1:Thismayseemstrange,butifyoulookatthegraphsoftheyhaveapproximatelythesameslopeneartheorigin(asgetsclosertozero).Sinceandthesineofareaboutthesameasapproacheszero,theirquotientwillbeveryclosetoone.Furthermore,because(reviewcosinevaluesifyoudon'tgetthis!),weknowthatNowwewillfindasecondrule.Let'sevaluatethelimitFirst,multiplythetopandbottomby.
Weget:
Nowsimplifythelimitto:Next,wecanusethetrigonometricidentityandrewritethelimitas:Now,breakthisintotwolimits:Thefirstlimitis-1(seeRuleNo.1)andthesecondis0,sothelimitis0.RuleNo.2:Example11:FindExample12:FindRuleNo.3:RuleNo.4:Example13:FindProblem1.FindProblem2.FindProblem3.FindProblem4.FindProblem5.FindProblem6.FindProblem7.FindTheorem1.2PropertiesofLimitsTheorem1.3LimitsofPolynomialandRationalFunctionsUseyourcalculatortodeterminethefollowing:(a)(b)1.2Limitsoftrigonometricfunctions1DNESupposethatcisaconstantandthefollowinglimitsexist2.1RatesofChangeandLimitsSupposethatcisaconstantandthefollowinglimitsexist2.1RatesofChangeandLimitswherenisapositiveinteger.wherenisapositiveinteger.wherenisapositiveinteger.wherenisapositiveinteger.2.1RatesofChangeandLimitsEvaluatethefollowinglimits.Justifyeachstepusingthelawsoflimits.16-5/4262.1RatesofChangeandLimitsIffisarationalfunctionorcomplex:Eliminatecommonfactors.Performlongdivision.Simplifythefunction(ifacomplexfraction)Ifradicalsexist,rationalizethenumeratorordenominator.Ifabsolutevaluesexist,useone-sidedlimitsandthefollowingproperty.2.1RatesofChangeandLimits3/2DNE1/2DNE2.1RatesofChangeandLimitsTheoremIff(x)g(x)whenxisneara(exceptpossiblyata)andthelimitsoffandgbothexistasxapproachesa,then
2.1RatesofChangeandLimitsTheSqueeze(Sandwich)TheoremIff(x)g(x)h(x)whenxisneara(exceptpossiblyata)andthen2.1RatesofChangeandLimitsShowthat:Themaximumvalueofsineis1,soTheminimumvalueofsineis-1,soSo:2.1RatesofChangeandLimitsBythesandwichtheorem:2.1RatesofChangeandLimits2.1RatesofChangeandLimitsTherefore,2.1RatesofChangeandLimitssimplifyanddividebysinθ2.1RatesofChangeandLimits2.1RatesofChangeandLimitsP(cos,sin)Q(1,0)Thenotationmeansthatthevaluesoff(x)canbemadearbitrarilylarge(aslargeasweplease)bytakingxsufficientlyclosetoa(oneitherside)butnotequaltoa.2.2LimitsInvolvingInfinityafVerticalAsymptote2.2LimitsInvolvingInfinityVerticalAsymptoteThelinex=aiscalledaverticalasymptoteofthecurvey=f(x)ifatleastoneofthefollowingstatementsistrue:2.2LimitsInvolvingInfinityf(x)=lnxhasaverticalasymptoteatx=0sincef(x)=tanxhasaverticalasymptoteatx=/2since2.2LimitsInvolvingInfinity2.2LimitsInvolvingInfinity-∞x=3x=1DeterminetheequationsoftheverticalasymptotesofFindthelimitLetfbeafunctiondefinedonsomeinterval(a,∞).Thenmeansthatthevalueoff(x)canbemadeasclosetoLaswelikebytakingxsufficientlylarge.2.2LimitsInvolvingInfinityHorizontalAsymptoteLf2.2LimitsInvolvingInfinity2.2LimitsInvolvingInfinityDefinitionEndBehaviorModelSupposethatfisarationalfunctionasfollows:HorizontalAsymptoteTheliney=Liscalledahorizontalasymptoteofthecurvey=f(x)ifeitheror2.2LimitsInvolvingInfinityf(x)=exhasahorizontalasymptoteaty=0since2.2LimitsInvolvingInfinityIfnisapositiveinteger,then2.2LimitsInvolvingInfinityFindthelimit 2.2LimitsInvolvingInfinity-1/32/31/3Findthelimit 2.2LimitsInvolvingInfinityUsesqueezetheorem2.2LimitsInvolvingInfinityAfunctioniscontinuousatapointifthelimitisthesameasthevalueofthefunction.Thisfunctionhasdiscontinuitiesatx=1andx=2.Itiscontinuousatx=0andx=4,becausetheone-sidedlimitsmatchthevalueofthefunction1234122.3ContinuityDefinition:ContinuityAfunctioniscontinuousatanumberaifThatis,1. f(a)isdefined2. exists3. 2.3ContinuityDefinition:OneSidedContinuityAfunctionfiscontinuousfromtherightatanumberaifandfiscontinuousfromtheleftataif2.3Continuity1.Removablediscontinuity2.3Continuity2.Infinitediscontinuity2.3Continuity3.Jumpdiscontinuity2.3Continuity4.Oscillatingdiscontinuity2.3ContinuityDefinition:ContinuityOnAnIntervalAfunctionfiscontinuousonanintervalifitiscontinuousateverynumberintheinterval.(Iffisdefinedononesideofanendpointoftheinterval,weunderstandcontinuousattheendpointstomeancontinuousfromtherightorcontinuousfromtheleft).2.3ContinuityTheorem
f+g
f–g
cf
fg
f/gifg(a)0
f(g(x))Iffandgarecontinuousataandcisaconstant,thenthefollowingfunctionsarealsocontinuousata:2.3ContinuityTheoremAnypolynomialiscontinuouseverywhere;thatis,itiscontinuouson=(-∞,∞).Anyrationalfunctioniscontinuouswheneveritisdefined;thatis,itiscontinuousonitsdomain.2.3ContinuityAnyofthefollowingtypesoffunctionsarecontinuousateverynumberintheirdomain:Polynomials;RationalFunctions,RootFunctions;TrigonometricFunctions;InverseTrigonometricFunctions;ExponentialFunctions;andLogarithmicFunctions.2.3ContinuityIffiscontinuousatband ,then .Inotherwords,2.3ContinuityIfgiscontinuousataandfiscontinuousatg(a),thenthecompositefunctionf(g(x))iscontinuousata.2.3ContinuityTheIntermediateValueTheoremSupposethatfiscontinuousontheclosedinterval[a,b]andletNbeanynumberbetweenf(a)andf(b).Thenthereexistsanumbercin(a,b)suchthatf(c)=N.afbf(a)f(b)cf(c)=N2.3ContinuityUsetheIntermediateValueTheoremtoshowthatthereisarootofthegivenequationinthespecifiedinterval.2.3ContinuityGraphContinuousatx=0?
GraphContinuousatx=0?00yesundefined0noundefinedDNEnoundefined1no00yesundefined1noundefinedDNEno0DNEnoundefined0noDefinition:LimitLetcandLberealnumbers.Thefunction
fhaslimitLasxapproachesc
if,foranygivenpositivenumberε,thereisapositivenumberδsuchthatforallx,2.3ContinuitySolutionSetc=1andf(x)=5x-3andL=2.Foranygiven>0,thereexistsa>0suchthat0<|x-1|<whenever|f(x)-2|<2.3Continuity|(5x-3)-2|<|5x-5|<5|x-1|<|x-1|</5Soif=/51-11+2+2-22.3ContinuitySolutionSetc=2andf(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版工業(yè)地皮購置與交易全程稅務籌劃合同3篇
- 二零二五年教育培訓機構(gòu)兼職教師雇傭協(xié)議書3篇
- 蘇州工業(yè)園區(qū)服務外包職業(yè)學院《電液控制工程》2023-2024學年第一學期期末試卷
- 二零二五版生態(tài)環(huán)保型建筑材料銷售合同3篇
- 二零二五年度定制化餐盒包裝解決方案合同3篇
- 2025年度高新技術(shù)企業(yè)研發(fā)項目財務擔保合同會計處理細則3篇
- 2024版茶樓活動策劃合同2篇
- 二零二五年服裝店導購員培訓與激勵合同范本3篇
- 山西鐵道職業(yè)技術(shù)學院《矯正社會工作》2023-2024學年第一學期期末試卷
- 廈門海洋職業(yè)技術(shù)學院《創(chuàng)意表現(xiàn)圖案》2023-2024學年第一學期期末試卷
- 公路工程施工現(xiàn)場安全檢查手冊
- 公司組織架構(gòu)圖(可編輯模版)
- 1汽輪機跳閘事故演練
- 陜西省銅川市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細
- 禮品(禮金)上交登記臺賬
- 北師大版七年級數(shù)學上冊教案(全冊完整版)教學設計含教學反思
- 2023高中物理步步高大一輪 第五章 第1講 萬有引力定律及應用
- 青少年軟件編程(Scratch)練習題及答案
- 浙江省公務員考試面試真題答案及解析精選
- 系統(tǒng)性紅斑狼瘡-第九版內(nèi)科學
- 全統(tǒng)定額工程量計算規(guī)則1994
評論
0/150
提交評論