《概率論與數(shù)理統(tǒng)計》統(tǒng)考試卷_第1頁
《概率論與數(shù)理統(tǒng)計》統(tǒng)考試卷_第2頁
《概率論與數(shù)理統(tǒng)計》統(tǒng)考試卷_第3頁
《概率論與數(shù)理統(tǒng)計》統(tǒng)考試卷_第4頁
《概率論與數(shù)理統(tǒng)計》統(tǒng)考試卷_第5頁
已閱讀5頁,還剩1頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

《概率論與數(shù)理統(tǒng)計》統(tǒng)考試卷一、填空題(每小題2分,共20分)1.已知,,,。2.設(shè)隨機變量,且隨機變量,則。3.設(shè)是上的隨機變量,且,若,。4.設(shè)二維隨機變量的聯(lián)合概率密度函數(shù)為:,則。5.無偏估計要求估計量的等于被估計參數(shù)的真值。6.設(shè)7.設(shè)8.設(shè)為隨機變量,且,若,,,則。,則。為來自正態(tài)總體的簡單隨機樣本,,分別為樣本均值和樣本標準差,則~。9.已知一批零件的長度(單位:cm)服從正態(tài)分布值為40(cm),則的置信度為0.95的置信區(qū)間是,從中隨機地抽取16個零件,得到長度的平均未知,要檢驗。10.樣本來自正態(tài)總體的,其中,采用的統(tǒng)計量是。二、選擇題(每小題2分,共10分)1.若事件A、B滿足AB,則下列關(guān)系式正確的是()A.C.B.D..2.設(shè)隨機變量,則()A.0B.0.25C.0.5D.13.設(shè)隨機變量,則的分布函數(shù)滿足()A.C.B.D.4.設(shè)隨機變量滿足,則下列可能服從的分布為()A.正態(tài)分布B.二項分布C.泊松分布D.指數(shù)分布5.一元線性回歸分析中,記稱為總的離差平方和,它反映了()A.回歸值的分散程度B.試驗誤差等隨機因素對引起的差異程度C.的觀測值總的分散程度D.自變量的變化在回歸直線上對因變量引起的差異程度三、計算題(每小題8分,共40分)1.設(shè)有兩箱同種零件,第一箱內(nèi)裝50件,其中10件一等品;第二箱內(nèi)裝30件,其中18件一等品。現(xiàn)從兩箱中任取一箱,然后從該箱中任取兩個零件(有放回抽取)。試求:(1)先取出的零件是一等品的概率;(2)在先取出的零件是一等品的條件下,第二次取出的零件仍然是一等品的概率。2.在某公共汽車站甲、乙、丙三人分別獨立的等1,2,3路汽車。設(shè)每個人等車時間(單位:分鐘)均服從[0,5]上的均勻分布。求三人中至少有兩人等車時間不超過兩分鐘的概率。3.設(shè)隨機變量的概率密度為求:(1)的分布函數(shù);(2);(3)。4.假設(shè)隨機變量Y服從參數(shù)為的指數(shù)分布,令隨機變量求和的聯(lián)合概率分布;(2)求。5.設(shè)總體的概率密度為其中為未知參數(shù),為來自總體的樣本,試求的極大似然估計。四、應用題(每小題8分,共24分)1.設(shè)供電站供應某地區(qū)1000戶居民用電,各戶用電情況相互獨立。已知每戶每日用電量(單位:度)在[0,20]上均勻分布。試求:要以99%的概率保證該地區(qū)居民供應電量的需要,供電站每天至少應向該地區(qū)供應多少度電?2.某廠生產(chǎn)電池,電池壽命,今從一批電池中抽取26只作壽命試驗,測得樣本方差(時2)。取=0.05,問這批電池壽命波動性與原來是否有顯著性差異?3.假定某企業(yè)的某種產(chǎn)品產(chǎn)量與單位成本資料如下表月份123456產(chǎn)量(千件)234345單位成本(元/千件)737271736968求:(1)確定對的線性回歸方程;(2)對所求的線性回歸方程作顯著性檢驗();(3)產(chǎn)量每增加1000件時,單位成本平均下降多少?五、證明題(6分)設(shè)隨機變量的密度函數(shù)為證明:附表的概率密度為0.50.691510.84131.50.93321.650.951.960.97520.97732.320.9930.9987,,,,,,一、填空題(每小題2分,共20分)1.0.8;2.0.72;3.0.25;4.0.25;5.期望值;6.-1;7.α/2;8.;9.;10.。二、選擇題(每小題2分,共10分)1.A;2.B;3.D;4.D;5.C。三、計算題(每小題8分,共40分)1.分別表示取到第一箱和取到第二箱,分別表示先取出的是一等品和后取出的是一等品。則,,,(1)由全概率公式(2),2.設(shè)表示甲、乙、丙三人中等車時間不超過2分鐘的人數(shù),則其中表示每個人等車時間不超過2分鐘的概率,則所求概率3.(1)(2)(3)4.的所有可能取值為(0,0),(0,1),(1,0),(1,1)01010由聯(lián)合分布可知,均服從0—1分布,參數(shù)分別和,所以5.似然函數(shù)令得的極大似然估計為四、應用題(每小題8分,共24分)1.設(shè)表示第戶居民的用電量,表示該地區(qū)總的用電量,則,且各相互獨立。,由中心極限定理,近似服從正態(tài)分布,那么供電站每天至少應向該地區(qū)供應10423.57度電。2.要檢驗選定統(tǒng)計量=0.05,,當,成立時,服從自由度為25的分布。,接受域(13.12,40.646)經(jīng)計算,接受原假設(shè)。這批電池壽命波動性與原來沒有顯著性差異。3.(1)經(jīng)計算,,,,因此,所求的線性回歸方程為:(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論