版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某三棱錐的三視圖如圖所示,那么該三棱錐的表面中直角三角形的個(gè)數(shù)為()A.1 B.2 C.3 D.02.設(shè),則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件3.中國的國旗和國徽上都有五角星,正五角星與黃金分割有著密切的聯(lián)系,在如圖所示的正五角星中,以、、、、為頂點(diǎn)的多邊形為正五邊形,且,則()A. B. C. D.4.如圖,是圓的一條直徑,為半圓弧的兩個(gè)三等分點(diǎn),則()A. B. C. D.5.函數(shù)的圖象與函數(shù)的圖象的交點(diǎn)橫坐標(biāo)的和為()A. B. C. D.6.若復(fù)數(shù)滿足(為虛數(shù)單位),則其共軛復(fù)數(shù)的虛部為()A. B. C. D.7.已知三棱錐中,是等邊三角形,,則三棱錐的外接球的表面積為()A. B. C. D.8.已知三棱錐的所有頂點(diǎn)都在球的球面上,平面,,若球的表面積為,則三棱錐的體積的最大值為()A. B. C. D.9.已知,,由程序框圖輸出的為()A.1 B.0 C. D.10.在關(guān)于的不等式中,“”是“恒成立”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.已知等差數(shù)列{an},則“a2>a1”是“數(shù)列{an}為單調(diào)遞增數(shù)列”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件12.設(shè),,則的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓柱的上下底面的中心分別為,過直線的平面截該圓柱所得的截面是面積為36的正方形,則該圓柱的體積為____14.隨著國力的發(fā)展,人們的生活水平越來越好,我國的人均身高較新中國成立初期有大幅提高.為了掌握學(xué)生的體質(zhì)與健康現(xiàn)狀,合理制定學(xué)校體育衛(wèi)生工作發(fā)展規(guī)劃,某市進(jìn)行了一次全市高中男生身高統(tǒng)計(jì)調(diào)查,數(shù)據(jù)顯示全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,那么該市身高高于的高中男生人數(shù)大約為__________.15.從集合中隨機(jī)取一個(gè)元素,記為,從集合中隨機(jī)取一個(gè)元素,記為,則的概率為_______.16.已知過點(diǎn)的直線與函數(shù)的圖象交于、兩點(diǎn),點(diǎn)在線段上,過作軸的平行線交函數(shù)的圖象于點(diǎn),當(dāng)∥軸,點(diǎn)的橫坐標(biāo)是三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖中,為的中點(diǎn),,,.(1)求邊的長;(2)點(diǎn)在邊上,若是的角平分線,求的面積.18.(12分)已知,且滿足,證明:.19.(12分)已知橢圓C:(a>b>0)過點(diǎn)(0,),且滿足a+b=3.(1)求橢圓C的方程;(2)若斜率為的直線與橢圓C交于兩個(gè)不同點(diǎn)A,B,點(diǎn)M坐標(biāo)為(2,1),設(shè)直線MA與MB的斜率分別為k1,k2,試問k1+k2是否為定值?并說明理由.20.(12分)某工廠的機(jī)器上有一種易損元件A,這種元件在使用過程中發(fā)生損壞時(shí),需要送維修處維修.工廠規(guī)定當(dāng)日損壞的元件A在次日早上8:30之前送到維修處,并要求維修人員當(dāng)日必須完成所有損壞元件A的維修工作.每個(gè)工人獨(dú)立維修A元件需要時(shí)間相同.維修處記錄了某月從1日到20日每天維修元件A的個(gè)數(shù),具體數(shù)據(jù)如下表:日期1日2日3日4日5日6日7日8日9日10日元件A個(gè)數(shù)91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A個(gè)數(shù)12241515151215151524從這20天中隨機(jī)選取一天,隨機(jī)變量X表示在維修處該天元件A的維修個(gè)數(shù).(Ⅰ)求X的分布列與數(shù)學(xué)期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前維修處有兩名工人從事維修工作,為使每個(gè)維修工人每天維修元件A的個(gè)數(shù)的數(shù)學(xué)期望不超過4個(gè),至少需要增加幾名維修工人?(只需寫出結(jié)論)21.(12分)在平面直角坐標(biāo)系中,已知向量,,其中.(1)求的值;(2)若,且,求的值.22.(10分)已知橢圓:(),四點(diǎn),,,中恰有三點(diǎn)在橢圓上.(1)求橢圓的方程;(2)設(shè)橢圓的左右頂點(diǎn)分別為.是橢圓上異于的動點(diǎn),求的正切的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
由三視圖還原原幾何體,借助于正方體可得三棱錐的表面中直角三角形的個(gè)數(shù).【詳解】由三視圖還原原幾何體如圖,其中,,為直角三角形.∴該三棱錐的表面中直角三角形的個(gè)數(shù)為3.故選:C.【點(diǎn)睛】本小題主要考查由三視圖還原為原圖,屬于基礎(chǔ)題.2.C【解析】
根據(jù)充分條件和必要條件的定義結(jié)合對數(shù)的運(yùn)算進(jìn)行判斷即可.【詳解】∵a,b∈(1,+∞),∴a>b?logab<1,logab<1?a>b,∴a>b是logab<1的充分必要條件,故選C.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,根據(jù)不等式的解法是解決本題的關(guān)鍵.3.A【解析】
利用平面向量的概念、平面向量的加法、減法、數(shù)乘運(yùn)算的幾何意義,便可解決問題.【詳解】解:.故選:A【點(diǎn)睛】本題以正五角星為載體,考查平面向量的概念及運(yùn)算法則等基礎(chǔ)知識,考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.4.B【解析】
連接、,即可得到,,再根據(jù)平面向量的數(shù)量積及運(yùn)算律計(jì)算可得;【詳解】解:連接、,,是半圓弧的兩個(gè)三等分點(diǎn),,且,所以四邊形為棱形,.故選:B【點(diǎn)睛】本題考查平面向量的數(shù)量積及其運(yùn)算律的應(yīng)用,屬于基礎(chǔ)題.5.B【解析】
根據(jù)兩個(gè)函數(shù)相等,求出所有交點(diǎn)的橫坐標(biāo),然后求和即可.【詳解】令,有,所以或.又,所以或或或,所以函數(shù)的圖象與函數(shù)的圖象交點(diǎn)的橫坐標(biāo)的和,故選B.【點(diǎn)睛】本題主要考查三角函數(shù)的圖象及給值求角,側(cè)重考查數(shù)學(xué)建模和數(shù)學(xué)運(yùn)算的核心素養(yǎng).6.D【解析】
由已知等式求出z,再由共軛復(fù)數(shù)的概念求得,即可得虛部.【詳解】由zi=1﹣i,∴z=,所以共軛復(fù)數(shù)=-1+,虛部為1故選D.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算和共軛復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.7.D【解析】
根據(jù)底面為等邊三角形,取中點(diǎn),可證明平面,從而,即可證明三棱錐為正三棱錐.取底面等邊的重心為,可求得到平面的距離,畫出幾何關(guān)系,設(shè)球心為,即可由球的性質(zhì)和勾股定理求得球的半徑,進(jìn)而得球的表面積.【詳解】設(shè)為中點(diǎn),是等邊三角形,所以,又因?yàn)?,且,所以平面,則,由三線合一性質(zhì)可知所以三棱錐為正三棱錐,設(shè)底面等邊的重心為,可得,,所以三棱錐的外接球球心在面下方,設(shè)為,如下圖所示:由球的性質(zhì)可知,平面,且在同一直線上,設(shè)球的半徑為,在中,,即,解得,所以三棱錐的外接球表面積為,故選:D.【點(diǎn)睛】本題考查了三棱錐的結(jié)構(gòu)特征和相關(guān)計(jì)算,正三棱錐的外接球半徑求法,球的表面積求法,對空間想象能力要求較高,屬于中檔題.8.B【解析】
由題意畫出圖形,設(shè)球0得半徑為R,AB=x,AC=y,由球0的表面積為20π,可得R2=5,再求出三角形ABC外接圓的半徑,利用余弦定理及基本不等式求xy的最大值,代入棱錐體積公式得答案.【詳解】設(shè)球的半徑為,,,由,得.如圖:設(shè)三角形的外心為,連接,,,可得,則.在中,由正弦定理可得:,即,由余弦定理可得,,.則三棱錐的體積的最大值為.故選:.【點(diǎn)睛】本題考查三棱錐的外接球、三棱錐的側(cè)面積、體積,基本不等式等基礎(chǔ)知識,考查空間想象能力、邏輯思維能力、運(yùn)算求解能力,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,是中檔題.9.D【解析】試題分析:,,所以,所以由程序框圖輸出的為.故選D.考點(diǎn):1、程序框圖;2、定積分.10.C【解析】
討論當(dāng)時(shí),是否恒成立;討論當(dāng)恒成立時(shí),是否成立,即可選出正確答案.【詳解】解:當(dāng)時(shí),,由開口向上,則恒成立;當(dāng)恒成立時(shí),若,則不恒成立,不符合題意,若時(shí),要使得恒成立,則,即.所以“”是“恒成立”的充要條件.故選:C.【點(diǎn)睛】本題考查了命題的關(guān)系,考查了不等式恒成立問題.對于探究兩個(gè)命題的關(guān)系時(shí),一般分成兩步,若,則推出是的充分條件;若,則推出是的必要條件.11.C【解析】試題分析:根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可.解:在等差數(shù)列{an}中,若a2>a1,則d>0,即數(shù)列{an}為單調(diào)遞增數(shù)列,若數(shù)列{an}為單調(diào)遞增數(shù)列,則a2>a1,成立,即“a2>a1”是“數(shù)列{an}為單調(diào)遞增數(shù)列”充分必要條件,故選C.考點(diǎn):必要條件、充分條件與充要條件的判斷.12.D【解析】
利用倍角公式求得的值,利用誘導(dǎo)公式求得的值,利用同角三角函數(shù)關(guān)系式求得的值,進(jìn)而求得的值,最后利用正切差角公式求得結(jié)果.【詳解】,,,,,,,,故選:D.【點(diǎn)睛】該題考查的是有關(guān)三角函數(shù)求值問題,涉及到的知識點(diǎn)有誘導(dǎo)公式,正切倍角公式,同角三角函數(shù)關(guān)系式,正切差角公式,屬于基礎(chǔ)題目.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由軸截面是正方形,易求底面半徑和高,則圓柱的體積易求.【詳解】解:因?yàn)檩S截面是正方形,且面積是36,所以圓柱的底面直徑和高都是6故答案為:【點(diǎn)睛】考查圓柱的軸截面和其體積的求法,是基礎(chǔ)題.14.3000【解析】
根據(jù)正態(tài)曲線的對稱性求出,進(jìn)而可求出身高高于的高中男生人數(shù).【詳解】解:全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,則,該市身高高于的高中男生人數(shù)大約為.故答案為:.【點(diǎn)睛】本題考查正態(tài)曲線的對稱性的應(yīng)用,是基礎(chǔ)題.15.【解析】
先求出隨機(jī)抽取a,b的所有事件數(shù),再求出滿足的事件數(shù),根據(jù)古典概型公式求出結(jié)果.【詳解】解:從集合中隨機(jī)取一個(gè)元素,記為,從集合中隨機(jī)取一個(gè)元素,記為,則的事件數(shù)為9個(gè),即為,,,其中滿足的有,,,共有8個(gè),故的概率為.【點(diǎn)睛】本題考查了古典概型的計(jì)算,解題的關(guān)鍵是準(zhǔn)確列舉出所有事件數(shù).16.【解析】
通過設(shè)出A點(diǎn)坐標(biāo),可得C點(diǎn)坐標(biāo),通過∥軸,可得B點(diǎn)坐標(biāo),于是再利用可得答案.【詳解】根據(jù)題意,可設(shè)點(diǎn),則,由于∥軸,故,代入,可得,即,由于在線段上,故,即,解得.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)10;(2).【解析】
(1)由題意可得cos∠ADB=﹣cos∠ADC,由已知利用余弦定理可得:9+BD2﹣52+9+BD2﹣16=0,進(jìn)而解得BC的值.(2)由(1)可知△ADC為直角三角形,可求S△ADC6,S△ABC=2S△ADC=12,利用角平分線的性質(zhì)可得,根據(jù)S△ABC=S△BCE+S△ACE可求S△BCE的值.【詳解】(1)因?yàn)樵谶吷希?,在和中由余弦定理,得,因?yàn)椋?,,,所以,所以?所以邊的長為10.(2)由(1)知為直角三角形,所以,.因?yàn)槭堑慕瞧椒志€,所以.所以,所以.即的面積為.【點(diǎn)睛】本題主要考查了余弦定理,三角形的面積公式,角平分線的性質(zhì)在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.18.證明見解析【解析】
將化簡可得,由柯西不等式可得證明.【詳解】解:因?yàn)?,,所以,又,所以,?dāng)且僅當(dāng)時(shí)取等號.【點(diǎn)睛】本題主要考查柯西不等式的應(yīng)用,相對不難,注意已知條件的化簡及柯西不等式的靈活運(yùn)用.19.(1)(2)k1+k2為定值0,見解析【解析】
(1)利用已知條件直接求解,得到橢圓的方程;(2)設(shè)直線在軸上的截距為,推出直線方程,然后將直線與橢圓聯(lián)立,設(shè),利用韋達(dá)定理求出,然后化簡求解即可.【詳解】(1)由橢圓過點(diǎn)(0,),則,又a+b=3,所以,故橢圓的方程為;(2),證明如下:設(shè)直線在軸上的截距為,所以直線的方程為:,由得:,由得,設(shè),則,所以,又,所以,故.【點(diǎn)睛】本題主要考查了橢圓的標(biāo)準(zhǔn)方程的求解,直線與橢圓的位置關(guān)系的綜合應(yīng)用,考查了方程的思想,轉(zhuǎn)化與化歸的思想,考查了學(xué)生的運(yùn)算求解能力.20.(Ⅰ)分布列見解析,;(Ⅱ);(Ⅲ)至少增加2人.【解析】
(Ⅰ)求出X的所有可能取值為9,12,15,18,24,求出概率,得到X的分布列,然后求解期望即可.(Ⅱ)當(dāng)P(a≤X≤b)取到最大值時(shí),求出a,b的可能值,然后求解P(a≤X≤b)的最大值即可.(Ⅲ)利用前兩問的結(jié)果,判斷至少增加2人.【詳解】(Ⅰ)X的取值為:9,12,15,18,24;,,,,,X的分布列為:X912151824P故X的數(shù)學(xué)期望;(Ⅱ)當(dāng)P(a≤X≤b)取到最大值時(shí),a,b的值可能為:,或,或.經(jīng)計(jì)算,,,所以P(a≤X≤b)的最大值為.(Ⅲ)至少增加2人.【點(diǎn)睛】本題考查離散型隨機(jī)變量及其分布列,離散型隨機(jī)變量的期望與方差,屬于中等題.21.(1)(2).【解析】
(1)根據(jù),由向量,的坐標(biāo)直接計(jì)算即得;(2)先求出,再根據(jù)向量平行的坐標(biāo)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國美容培訓(xùn)行業(yè)資本規(guī)劃與股權(quán)融資戰(zhàn)略制定與實(shí)施研究報(bào)告
- 建設(shè)施工過程職業(yè)病危害防治總結(jié)報(bào)告
- 肇慶市中小學(xué)教學(xué)質(zhì)量評估2012屆高中畢業(yè)班第二次模擬試題數(shù)學(xué)(理)
- 浙江中乾計(jì)量校準(zhǔn)有限公司介紹企業(yè)發(fā)展分析報(bào)告
- 軟件評估報(bào)告范例怎么寫
- 一年級數(shù)學(xué)(上)計(jì)算題專項(xiàng)練習(xí)集錦
- 年產(chǎn)毛竹纖維粉生物基可降解材料項(xiàng)目可行性研究報(bào)告模板-立項(xiàng)備案
- 年產(chǎn)15萬噸(折百)稀硝酸及10萬噸濃硝酸項(xiàng)目可行性研究報(bào)告模板-立項(xiàng)備案
- 二零二五年度技術(shù)服務(wù)合同標(biāo)的和技術(shù)要求
- 二零二五年度護(hù)坡工程環(huán)保施工合同范本3篇
- 2024關(guān)于家長會家長代表發(fā)言稿(30篇)
- 中醫(yī)內(nèi)科學(xué):中醫(yī)內(nèi)科學(xué)肢體經(jīng)絡(luò)病證考試題(題庫版)
- 高中生物學(xué)科思維導(dǎo)圖(人教版必修一)
- DL∕T 2138-2020 電力專利價(jià)值評估規(guī)范
- NB-T10859-2021水電工程金屬結(jié)構(gòu)設(shè)備狀態(tài)在線監(jiān)測系統(tǒng)技術(shù)條件
- GJB9001C產(chǎn)品風(fēng)險(xiǎn)評估報(bào)告
- 2024年天津三源電力集團(tuán)限公司社會招聘33人【重點(diǎn)基礎(chǔ)提升】模擬試題(共500題)附帶答案詳解
- 水利工程施工單位竣工資料目錄
- 技術(shù)經(jīng)濟(jì)學(xué)(中國石油大學(xué)(華東))-知到答案、智慧樹答案
- 《中國高鐵作業(yè)設(shè)計(jì)方案-2023-2024學(xué)年科學(xué)冀人版》
- 招標(biāo)代理服務(wù)服務(wù)方案
評論
0/150
提交評論