高中數(shù)學北師大版2第二章變化率與導(dǎo)數(shù)第2章4_第1頁
高中數(shù)學北師大版2第二章變化率與導(dǎo)數(shù)第2章4_第2頁
高中數(shù)學北師大版2第二章變化率與導(dǎo)數(shù)第2章4_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第二章§4一、選擇題1.設(shè)f(x)=xlnx,若f′(x0)=2,則x0=()A.e2 B.e\f(ln2,2) D.ln2解析:由已知有f′(x)=lnx+x·eq\f(1,x)=lnx+1,所以f′(x0)=2?lnx0+1=2?x0=e.答案:B2.函數(shù)y=(x+1)2(x-1)在x=1處的導(dǎo)數(shù)等于()A.1 B.2C.3 D.4解析:y′=[(x+1)2(x-1)]′=[(x+1)2]′(x-1)+(x+1)2(x-1)′=2(x+1)(x-1)+(x+1)2=3x2+2x-1∴y′|x=1=4.答案:D3.曲線f(x)=eq\f(1,5)x5上一點M處的切線與直線y=-x+3垂直,則該切線方程為()A.x-y+1=0 B.x-y+5=0C.5x-5y±4=0 D.不確定解析:設(shè)M(x0,y0),則eq\b\lc\{\rc\(\a\vs4\al\co1(y0=\f(1,5)x\o\al(5,0),x\o\al(4,0)=1))∴eq\b\lc\{\rc\(\a\vs4\al\co1(x0=1,y0=\f(1,5)))或eq\b\lc\{\rc\(\a\vs4\al\co1(x0=-1,y0=-\f(1,5)))即切點Meq\b\lc\(\rc\)(\a\vs4\al\co1(1,\f(1,5)))或eq\b\lc\(\rc\)(\a\vs4\al\co1(-1,-\f(1,5)))所求切線方程為y±eq\f(1,5)=x±1即5x-5y±4=0.答案:C4.已知點P在曲線y=eq\f(4,ex+1)上,α為曲線在點P處的切線的傾斜角,則α的取值范圍是()\b\lc\[\rc\)(\a\vs4\al\co1(0,\f(π,4))) \b\lc\[\rc\)(\a\vs4\al\co1(\f(π,4),\f(π,2)))\b\lc\(\rc\](\a\vs4\al\co1(\f(π,2),\f(3π,4))) \b\lc\[\rc\)(\a\vs4\al\co1(\f(3π,4),π))解析:設(shè)曲線在點P處的切線斜率為k,則k=y(tǒng)′=eq\f(-4ex,1+ex2)=eq\f(-4,ex+\f(1,ex)+2),因為ex>0,所以由均值不等式得k≥eq\f(-4,2\r(ex×\f(1,ex))+2),又k<0,∴-1≤k<0,即-1≤tanα<0,所以eq\f(3π,4)≤α<π.答案:D二、填空題5.已知f(x)=x2+2xf′(1),則f′(1)=________________.解析:f′(x)=2x+2f′(1∴f′(1)=2+2f′(1),∴f′(1)答案:-26.若曲線y=x3-2x+a與直線y=x+1相切,則常數(shù)a=______________.解析:由y′=3x2-2=1得切點為(1,2)和(-1,0)當x=1時有a-1=2,∴a=3當x=-1時有1+a=0,∴a=-1答案:3或-1三、解答題7.求下列函數(shù)的導(dǎo)數(shù):(1)f(x)=(x+2)(x-3);(2)f(x)=eq\f(1,x)-eq\f(1,x2);(3)f(x)=eq\f(sinx,1+sinx);(4)f(x)=lgx-3x.解析:(1)因為f(x)=(x+2)(x-3)=x2-x-6,所以f′(x)=2x-1;(2)因為f(x)=eq\f(1,x)-eq\f(1,x2),所以f′(x)=-eq\f(1,x2)-eq\f(-2,x3)=eq\f(2,x3)-eq\f(1,x2)=eq\f(2-x,x3);(3)因為f(x)=eq\f(sinx,1+sinx),所以f′(x)=eq\f(cosx1+sinx-sinxcosx,1+sinx2)=eq\f(cosx,1+sinx2);(4)因為f(x)=lgx-3x,所以f′(x)=eq\f(1,xln10)-3xln3.8.已知曲線方程y=x2,求過點B(3,5)且與曲線相切的直線方程.解析:設(shè)P(x0,y0)為切點,則切線斜率k=f′(x0)=2x0,故切線方程為y-y0=2x0(x-x0),∵P(x0,y0)在曲線上,∴y0=xeq\o\al(2,0),∴切線方程為:y-xeq\o\al(2,0)=2x0(x-x0)又(3,5)在切線上,將(3,5)代入上式得:5-xeq\o\al(2,0)=2x0(3-x0),解得x0=1或x0=5,∴切點坐標為(1,1)或(5,25),故所求切線方程為y-1=2×1×(x-1)或y-25=2×5×(x-5),即2x-y-1=0或10x-y-25=0.9.設(shè)函數(shù)y=ax3+bx2+cx+d的圖象與y軸的交點為點P,且曲線在點P處的切線方程為12x-y-4=0.若函數(shù)在點(2,0)處有水平切線,試確定函數(shù)的解析式.解析:∵y=ax3+bx2+cx+d的圖象與y軸的交點為P,∴P的坐標為P(0,d).又∵曲線在點P處的切線方程為y=12x-4,點P坐標適合方程,從而d=-4.又∵切線斜率k=12,故在x=0處的導(dǎo)數(shù)y′|x=0=12,而y′=3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論