回歸分析基本思想與其初步應(yīng)用_第1頁
回歸分析基本思想與其初步應(yīng)用_第2頁
回歸分析基本思想與其初步應(yīng)用_第3頁
回歸分析基本思想與其初步應(yīng)用_第4頁
回歸分析基本思想與其初步應(yīng)用_第5頁
已閱讀5頁,還剩33頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

回歸分析基本思想與其初步應(yīng)用

比《數(shù)學(xué)3》中“回歸”增加的內(nèi)容數(shù)學(xué)3——統(tǒng)計(jì)畫散點(diǎn)圖了解最小二乘法的思想求回歸直線方程y=bx+a用回歸直線方程解決應(yīng)用問題選修1-2——統(tǒng)計(jì)案例引入線性回歸模型y=bx+a+e了解模型中隨機(jī)誤差項(xiàng)e產(chǎn)生的原因了解相關(guān)指數(shù)R2

和模型擬合的效果之間的關(guān)系了解殘差圖的作用利用線性回歸模型解決一類非線性回歸問題正確理解分析方法與結(jié)果問題1:正方形的面積y與正方形的邊長(zhǎng)x之間的函數(shù)關(guān)系是y=x2確定性關(guān)系問題2:某水田水稻產(chǎn)量y與施肥量x之間是否-------有一個(gè)確定性的關(guān)系?例如:在7塊并排、形狀大小相同的試驗(yàn)田上進(jìn)行施肥量對(duì)水稻產(chǎn)量影響的試驗(yàn),得到如下所示的一組數(shù)據(jù):施化肥量x15202530354045水稻產(chǎn)量y330345365405445450455復(fù)習(xí)、變量之間的兩種關(guān)系自變量取值一定時(shí),因變量的取值帶有一定隨機(jī)性的兩個(gè)變量之間的關(guān)系叫做相關(guān)關(guān)系。1、定義:

1):相關(guān)關(guān)系是一種不確定性關(guān)系;注對(duì)具有相關(guān)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的方法叫回歸分析。2):2、現(xiàn)實(shí)生活中存在著大量的相關(guān)關(guān)系。

如:人的身高與年齡;產(chǎn)品的成本與生產(chǎn)數(shù)量;商品的銷售額與廣告費(fèi);家庭的支出與收入。等等回歸分析的內(nèi)容與步驟:統(tǒng)計(jì)檢驗(yàn)通過后,最后是利用回歸模型,根據(jù)自變量去估計(jì)、預(yù)測(cè)因變量。

回歸分析通過一個(gè)變量或一些變量的變化解釋另一變量的變化。

其主要內(nèi)容和步驟是:首先根據(jù)理論和對(duì)問題的分析判斷,將變量分為自變量和因變量;其次,設(shè)法找出合適的數(shù)學(xué)方程式(即回歸模型)描述變量間的關(guān)系;由于涉及到的變量具有不確定性,接著還要對(duì)回歸模型進(jìn)行統(tǒng)計(jì)檢驗(yàn);最小二乘法:稱為樣本點(diǎn)的中心。3、對(duì)兩個(gè)變量進(jìn)行的線性分析叫做線性回歸分析。2、回歸直線方程:2.相應(yīng)的直線叫做回歸直線。1、所求直線方程叫做回歸直---線方程;其中相關(guān)系數(shù)

1.計(jì)算公式2.相關(guān)系數(shù)的性質(zhì)(1)|r|≤1.(2)|r|越接近于1,相關(guān)程度越大;|r|越接近于0,相關(guān)程度越?。畣栴}:達(dá)到怎樣程度,x、y線性相關(guān)呢?它們的相關(guān)程度怎樣呢?正相關(guān)負(fù)相關(guān)相關(guān)系數(shù)r>0正相關(guān);r<0負(fù)相關(guān).通常,r∈[-1,-0.75]--負(fù)相關(guān)很強(qiáng);

r∈[0.75,1]—正相關(guān)很強(qiáng);

r∈[-0.75,-0.3]--負(fù)相關(guān)一般;r∈[0.3,0.75]—正相關(guān)一般;r∈[-,0.25]--相關(guān)性較弱;例1從某大學(xué)中隨機(jī)選取8名女大學(xué)生,其身高和體重?cái)?shù)據(jù)如表1-1所示。編號(hào)12345678身高/cm165165157170175165155170體重/kg4857505464614359求根據(jù)一名女大學(xué)生的身高預(yù)報(bào)她的體重的回歸方程,并預(yù)報(bào)一名身高為172cm的女大學(xué)生的體重。案例1:女大學(xué)生的身高與體重解:1、選取身高為自變量x,體重為因變量y,作散點(diǎn)圖:2、由散點(diǎn)圖知道身高和體重有比較好的線性相關(guān)關(guān)系,因此可以用線性回歸方程刻畫它們之間的關(guān)系。分析:由于問題中要求根據(jù)身高預(yù)報(bào)體重,因此選取身高為自變量,體重為因變量.2.回歸方程:1.散點(diǎn)圖;例1從某大學(xué)中隨機(jī)選取8名女大學(xué)生,其身高和體重?cái)?shù)據(jù)如表1-1所示。編號(hào)12345678身高/cm165165157170175165155170體重/kg4857505464614359求根據(jù)一名女大學(xué)生的身高預(yù)報(bào)她的體重的回歸方程,并預(yù)報(bào)一名身高為172cm的女大學(xué)生的體重。案例1:女大學(xué)生的身高與體重解:1、選取身高為自變量x,體重為因變量y,作散點(diǎn)圖:2、由散點(diǎn)圖知道身高和體重有比較好的線性相關(guān)關(guān)系,因此可以用線性回歸方程刻畫它們之間的關(guān)系。3、從散點(diǎn)圖還看到,樣本點(diǎn)散布在某一條直線的附近,而不是在一條直線上,所以不能用一次函數(shù)y=bx+a描述它們關(guān)系。探究:身高為172cm的女大學(xué)生的體重一定是嗎?如果不是,你能解析一下原因嗎?我們可以用下面的線性回歸模型來表示:y=bx+a+e,其中a和b為模型的未知參數(shù),e稱為隨機(jī)誤差。思考:產(chǎn)生隨機(jī)誤差項(xiàng)e的原因是什么?隨機(jī)誤差e的來源(可以推廣到一般):1、忽略了其它因素的影響:影響身高y的因素不只是體重x,可能還包括遺傳基因、飲食習(xí)慣、生長(zhǎng)環(huán)境等因素;2、用線性回歸模型近似真實(shí)模型所引起的誤差;3、身高y的觀測(cè)誤差。以上三項(xiàng)誤差越小,說明我們的回歸模型的擬合效果越好。函數(shù)模型與回歸模型之間的差別函數(shù)模型:回歸模型:可以提供選擇模型的準(zhǔn)則函數(shù)模型與回歸模型之間的差別函數(shù)模型:回歸模型:

線性回歸模型y=bx+a+e增加了隨機(jī)誤差項(xiàng)e,因變量y的值由自變量x和隨機(jī)誤差項(xiàng)e共同確定,即自變量x只能解析部分y的變化。

在統(tǒng)計(jì)中,我們也把自變量x稱為解析變量,因變量y稱為預(yù)報(bào)變量。所以,對(duì)于身高為172cm的女大學(xué)生,由回歸方程可以預(yù)報(bào)其體重為

思考:如何刻畫預(yù)報(bào)變量(體重)的變化?這個(gè)變化在多大程度上與解析變量(身高)有關(guān)?在多大程度上與隨機(jī)誤差有關(guān)?

假設(shè)身高和隨機(jī)誤差的不同不會(huì)對(duì)體重產(chǎn)生任何影響,那么所有人的體重將相同。在體重不受任何變量影響的假設(shè)下,設(shè)8名女大學(xué)生的體重都是她們的平均值,即8個(gè)人的體重都為。54.554.554.554.554.554.554.554.5體重/kg170155165175170157165165身高/cm87654321編號(hào)54.5kg在散點(diǎn)圖中,所有的點(diǎn)應(yīng)該落在同一條水平直線上,但是觀測(cè)到的數(shù)據(jù)并非如此。這就意味著預(yù)報(bào)變量(體重)的值受解析變量(身高)或隨機(jī)誤差的影響。對(duì)回歸模型進(jìn)行統(tǒng)計(jì)檢驗(yàn)5943616454505748體重/kg170155165175170157165165身高/cm87654321編號(hào)

例如,編號(hào)為6的女大學(xué)生的體重并沒有落在水平直線上,她的體重為61kg。解析變量(身高)和隨機(jī)誤差共同把這名學(xué)生的體重從54.5kg“推”到了61kg,相差,所以是解析變量和隨機(jī)誤差的組合效應(yīng)。

編號(hào)為3的女大學(xué)生的體重并也沒有落在水平直線上,她的體重為50kg。解析變量(身高)和隨機(jī)誤差共同把這名學(xué)生的體重從50kg“推”到了,相差,這時(shí)解析變量和隨機(jī)誤差的組合效應(yīng)為。用這種方法可以對(duì)所有預(yù)報(bào)變量計(jì)算組合效應(yīng)。數(shù)學(xué)上,把每個(gè)效應(yīng)(觀測(cè)值減去總的平均值)的平方加起來,即用表示總的效應(yīng),稱為總偏差平方和。在例1中,總偏差平方和為354。5943616454505748體重/kg170155165175170157165165身高/cm87654321編號(hào)

那么,在這個(gè)總的效應(yīng)(總偏差平方和)中,有多少來自于解析變量(身高)?有多少來自于隨機(jī)誤差?

假設(shè)隨機(jī)誤差對(duì)體重沒有影響,也就是說,體重僅受身高的影響,那么散點(diǎn)圖中所有的點(diǎn)將完全落在回歸直線上。但是,在圖中,數(shù)據(jù)點(diǎn)并沒有完全落在回歸直線上。這些點(diǎn)散布在回歸直線附近,所以一定是隨機(jī)誤差把這些點(diǎn)從回歸直線上“推”開了。在例1中,殘差平方和約為。

因此,數(shù)據(jù)點(diǎn)和它在回歸直線上相應(yīng)位置的差異是隨機(jī)誤差的效應(yīng),稱為殘差。例如,編號(hào)為6的女大學(xué)生,計(jì)算隨機(jī)誤差的效應(yīng)(殘差)為:對(duì)每名女大學(xué)生計(jì)算這個(gè)差異,然后分別將所得的值平方后加起來,用數(shù)學(xué)符號(hào)稱為殘差平方和,它代表了隨機(jī)誤差的效應(yīng)。表示為:即,

由于解析變量和隨機(jī)誤差的總效應(yīng)(總偏差平方和)為354,而隨機(jī)誤差的效應(yīng)為,所以解析變量的效應(yīng)為解析變量和隨機(jī)誤差的總效應(yīng)(總偏差平方和)

=解析變量的效應(yīng)(回歸平方和)+隨機(jī)誤差的效應(yīng)(殘差平方和)354-128.361=225.639這個(gè)值稱為回歸平方和。我們可以用相關(guān)指數(shù)R2來刻畫回歸的效果,其計(jì)算公式是樣本決定系數(shù)

(判定系數(shù)R2

)1.回歸平方和占總偏差平方和的比例反映回歸直線的擬合程度取值范圍在[0,1]之間

R21,說明回歸方程擬合的越好;R20,說明回歸方程擬合的越差判定系數(shù)等于相關(guān)系數(shù)的平方,即R2=(r)2顯然,R2的值越大,說明殘差平方和越小,也就是說模型擬合效果越好。在線性回歸模型中,R2表示解析變量對(duì)預(yù)報(bào)變量變化的貢獻(xiàn)率。

R2越接近1,表示回歸的效果越好(因?yàn)镽2越接近1,表示解析變量和預(yù)報(bào)變量的線性相關(guān)性越強(qiáng))。

如果某組數(shù)據(jù)可能采取幾種不同回歸方程進(jìn)行回歸分析,則可以通過比較R2的值來做出選擇,即選取R2較大的模型作為這組數(shù)據(jù)的模型。總的來說:相關(guān)指數(shù)R2是度量模型擬合效果的一種指標(biāo)。在線性模型中,它代表自變量刻畫預(yù)報(bào)變量的能力。我們可以用相關(guān)指數(shù)R2來刻畫回歸的效果,其計(jì)算公式是1354總計(jì)0.36128.361殘差變量0.64225.639隨機(jī)誤差比例平方和來源表1-3

從表3-1中可以看出,解析變量對(duì)總效應(yīng)約貢獻(xiàn)了64%,即R20.64,可以敘述為“身高解析了64%的體重變化”,而隨機(jī)誤差貢獻(xiàn)了剩余的36%。所以,身高對(duì)體重的效應(yīng)比隨機(jī)誤差的效應(yīng)大得多。我們可以用相關(guān)指數(shù)R2來刻畫回歸的效果,其計(jì)算公式是表3-2列出了女大學(xué)生身高和體重的原始數(shù)據(jù)以及相應(yīng)的殘差數(shù)據(jù)。

在研究?jī)蓚€(gè)變量間的關(guān)系時(shí),首先要根據(jù)散點(diǎn)圖來粗略判斷它們是否線性相關(guān),是否可以用回歸模型來擬合數(shù)據(jù)。殘差分析與殘差圖的定義:

然后,我們可以通過殘差來判斷模型擬合的效果,判斷原始數(shù)據(jù)中是否存在可疑數(shù)據(jù),這方面的分析工作稱為殘差分析。編號(hào)12345678身高/cm165165157170175165155170體重/kg4857505464614359殘差-6.3732.6272.419-4.6181.1376.627-2.8830.382

我們可以利用圖形來分析殘差特性,作圖時(shí)縱坐標(biāo)為殘差,橫坐標(biāo)可以選為樣本編號(hào),或身高數(shù)據(jù),或體重估計(jì)值等,這樣作出的圖形稱為殘差圖。2023/2/6殘差圖的制作及作用。坐標(biāo)縱軸為殘差變量,橫軸可以有不同的選擇;若模型選擇的正確,殘差圖中的點(diǎn)應(yīng)該分布在以橫軸為心的帶形區(qū)域;對(duì)于遠(yuǎn)離橫軸的點(diǎn),要特別注意。身高與體重殘差圖異常點(diǎn)

錯(cuò)誤數(shù)據(jù)模型問題

幾點(diǎn)說明:第一個(gè)樣本點(diǎn)和第6個(gè)樣本點(diǎn)的殘差比較大,需要確認(rèn)在采集過程中是否有人為的錯(cuò)誤。如果數(shù)據(jù)采集有錯(cuò)誤,就予以糾正,然后再重新利用線性回歸模型擬合數(shù)據(jù);如果數(shù)據(jù)采集沒有錯(cuò)誤,則需要尋找其他的原因。另外,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說明選用的模型計(jì)較合適,這樣的帶狀區(qū)域的寬度越窄,說明模型擬合精度越高,回歸方程的預(yù)報(bào)精度越高。溫度xoC21232527293235產(chǎn)卵數(shù)y/個(gè)711212466115325例2、現(xiàn)收集了一只紅鈴蟲的產(chǎn)卵數(shù)y和溫度x之間的7組觀測(cè)數(shù)據(jù)列于下表:(1)試建立產(chǎn)卵數(shù)y與溫度x之間的回歸方程;并預(yù)測(cè)溫度為28oC時(shí)產(chǎn)卵數(shù)目。(2)你所建立的模型中溫度在多大程度上解釋了產(chǎn)卵數(shù)的變化?問題呈現(xiàn):假設(shè)線性回歸方程為:?=bx+a選變量畫散點(diǎn)圖選模型分析和預(yù)測(cè)估計(jì)參數(shù)由計(jì)算器得:線性回歸方程為y=19.87x-463.73相關(guān)指數(shù)R2=r2≈0.8642=0.7464解:選取氣溫為解釋變量x,產(chǎn)卵數(shù)為預(yù)報(bào)變量y。所以,二次函數(shù)模型中溫度解釋了74.64%的產(chǎn)卵數(shù)變化。問題探究050100150200250300350036912151821242730333639方案1當(dāng)x=28時(shí),y=19.87×28-463.73≈9393>66!?模型不好?奇怪?

y=bx2+a變換y=bx+a非線性關(guān)系線性關(guān)系方案2問題1選用y=bx2+a

,還是y=bx2+cx+a?問題3產(chǎn)卵數(shù)氣溫問題2如何求a、b?合作探究方案2解答平方變換:令t=x2,產(chǎn)卵數(shù)y和溫度x之間二次函數(shù)模型y=bx2+a就轉(zhuǎn)化為產(chǎn)卵數(shù)y和溫度的平方t之間線性回歸模型y=bt+a溫度21232527293235溫度的平方t44152962572984110241225產(chǎn)卵數(shù)y/個(gè)711212466115325作散點(diǎn)圖,并由計(jì)算器得:y和t之間的線性回歸方程為y=t,相關(guān)指數(shù)R2=r22將t=x2代入線性回歸方程得:

y=x2當(dāng)x=28時(shí),y=0.367×282-202.54≈85,且R2,所以,二次函數(shù)模型中溫度解釋了80.2%的產(chǎn)卵數(shù)變化。t教法R2=r22y=x2問題2變換y=bx+a非線性關(guān)系

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論