2023屆蘇州新區(qū)一中高考仿真卷數學試題含解析_第1頁
2023屆蘇州新區(qū)一中高考仿真卷數學試題含解析_第2頁
2023屆蘇州新區(qū)一中高考仿真卷數學試題含解析_第3頁
2023屆蘇州新區(qū)一中高考仿真卷數學試題含解析_第4頁
2023屆蘇州新區(qū)一中高考仿真卷數學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.從5名學生中選出4名分別參加數學,物理,化學,生物四科競賽,其中甲不能參加生物競賽,則不同的參賽方案種數為A.48 B.72 C.90 D.962.已知,若則實數的取值范圍是()A. B. C. D.3.若函數f(x)=a|2x-4|(a>0,a≠1)滿足f(1)=,則f(x)的單調遞減區(qū)間是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]4.雙曲線﹣y2=1的漸近線方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=05.的展開式中的系數為()A.5 B.10 C.20 D.306.在中,為邊上的中線,為的中點,且,,則()A. B. C. D.7.已知六棱錐各頂點都在同一個球(記為球)的球面上,且底面為正六邊形,頂點在底面上的射影是正六邊形的中心,若,,則球的表面積為()A. B. C. D.8.已知復數(為虛數單位)在復平面內對應的點的坐標是()A. B. C. D.9.當輸入的實數時,執(zhí)行如圖所示的程序框圖,則輸出的不小于103的概率是()A. B. C. D.10.已知函數.設,若對任意不相等的正數,,恒有,則實數a的取值范圍是()A. B.C. D.11.已知函數,不等式對恒成立,則的取值范圍為()A. B. C. D.12.如圖,正三棱柱各條棱的長度均相等,為的中點,分別是線段和線段的動點(含端點),且滿足,當運動時,下列結論中不正確的是A.在內總存在與平面平行的線段B.平面平面C.三棱錐的體積為定值D.可能為直角三角形二、填空題:本題共4小題,每小題5分,共20分。13.若函數為自然對數的底數)在和兩處取得極值,且,則實數的取值范圍是______.14.設函數,則______.15.已知數列滿足:點在直線上,若使、、構成等比數列,則______16.“北斗三號”衛(wèi)星的運行軌道是以地心為一個焦點的橢圓.設地球半徑為R,若其近地點?遠地點離地面的距離大約分別是,,則“北斗三號”衛(wèi)星運行軌道的離心率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,內角的邊長分別為,且.(1)若,,求的值;(2)若,且的面積,求和的值.18.(12分)的內角的對邊分別為,若(1)求角的大?。?)若,求的周長19.(12分)設函數.(1)當時,求不等式的解集;(2)若對任意都有,求實數的取值范圍.20.(12分)如圖在棱錐中,為矩形,面,(1)在上是否存在一點,使面,若存在確定點位置,若不存在,請說明理由;(2)當為中點時,求二面角的余弦值.21.(12分)已知為坐標原點,單位圓與角終邊的交點為,過作平行于軸的直線,設與終邊所在直線的交點為,.(1)求函數的最小正周期;(2)求函數在區(qū)間上的值域.22.(10分)已知函數.(1)當時,求曲線在點處的切線方程;(2)若在上恒成立,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】因甲不參加生物競賽,則安排甲參加另外3場比賽或甲學生不參加任何比賽①當甲參加另外3場比賽時,共有?=72種選擇方案;②當甲學生不參加任何比賽時,共有=24種選擇方案.綜上所述,所有參賽方案有72+24=96種故答案為:96點睛:本題以選擇學生參加比賽為載體,考查了分類計數原理、排列數與組合數公式等知識,屬于基礎題.2、C【解析】

根據,得到有解,則,得,,得到,再根據,有,即,可化為,根據,則的解集包含求解,【詳解】因為,所以有解,即有解,所以,得,,所以,又因為,所以,即,可化為,因為,所以的解集包含,所以或,解得,故選:C【點睛】本題主要考查一元二次不等式的解法及集合的關系的應用,還考查了運算求解的能力,屬于中檔題,3、B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上單調遞減,在[2,+∞)上單調遞增,所以f(x)在(-∞,2]上單調遞增,在[2,+∞)上單調遞減,故選B.4、A【解析】試題分析:漸近線方程是﹣y2=1,整理后就得到雙曲線的漸近線.解:雙曲線其漸近線方程是﹣y2=1整理得x±2y=1.故選A.點評:本題考查了雙曲線的漸進方程,把雙曲線的標準方程中的“1”轉化成“1”即可求出漸進方程.屬于基礎題.5、C【解析】

由知,展開式中項有兩項,一項是中的項,另一項是與中含x的項乘積構成.【詳解】由已知,,因為展開式的通項為,所以展開式中的系數為.故選:C.【點睛】本題考查求二項式定理展開式中的特定項,解決這類問題要注意通項公式應寫準確,本題是一道基礎題.6、A【解析】

根據向量的線性運算可得,利用及,計算即可.【詳解】因為,所以,所以,故選:A【點睛】本題主要考查了向量的線性運算,向量數量積的運算,向量數量積的性質,屬于中檔題.7、D【解析】

由題意,得出六棱錐為正六棱錐,求得,再結合球的性質,求得球的半徑,利用表面積公式,即可求解.【詳解】由題意,六棱錐底面為正六邊形,頂點在底面上的射影是正六邊形的中心,可得此六棱錐為正六棱錐,又由,所以,在直角中,因為,所以,設外接球的半徑為,在中,可得,即,解得,所以外接球的表面積為.故選:D.【點睛】本題主要考查了正棱錐的幾何結構特征,以及外接球的表面積的計算,其中解答中熟記幾何體的結構特征,熟練應用球的性質求得球的半徑是解答的關鍵,著重考查了空間想象能力,以及推理與計算能力,屬于中檔試題.8、A【解析】

直接利用復數代數形式的乘除運算化簡,求得的坐標得出答案.【詳解】解:,在復平面內對應的點的坐標是.故選:A.【點睛】本題考查復數代數形式的乘除運算,考查復數的代數表示法及其幾何意義,屬于基礎題.9、A【解析】

根據循環(huán)結構的運行,直至不滿足條件退出循環(huán)體,求出的范圍,利用幾何概型概率公式,即可求出結論.【詳解】程序框圖共運行3次,輸出的的范圍是,所以輸出的不小于103的概率為.故選:A.【點睛】本題考查循環(huán)結構輸出結果、幾何概型的概率,模擬程序運行是解題的關鍵,屬于基礎題.10、D【解析】

求解的導函數,研究其單調性,對任意不相等的正數,構造新函數,討論其單調性即可求解.【詳解】的定義域為,,當時,,故在單調遞減;不妨設,而,知在單調遞減,從而對任意、,恒有,即,,,令,則,原不等式等價于在單調遞減,即,從而,因為,所以實數a的取值范圍是故選:D.【點睛】此題考查含參函數研究單調性問題,根據參數范圍化簡后構造新函數轉換為含參恒成立問題,屬于一般性題目.11、C【解析】

確定函數為奇函數,且單調遞減,不等式轉化為,利用雙勾函數單調性求最值得到答案.【詳解】是奇函數,,易知均為減函數,故且在上單調遞減,不等式,即,結合函數的單調性可得,即,設,,故單調遞減,故,當,即時取最大值,所以.故選:.【點睛】本題考查了根據函數單調性和奇偶性解不等式,參數分離求最值是解題的關鍵.12、D【解析】

A項用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項利用線面垂直的判定定理;C項三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定值,則體積是定值;D項用反證法說明三角形DMN不可能是直角三角形.【詳解】A項,用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確;B項,如圖:當M、N分別在BB1、CC1上運動時,若滿足BM=CN,則線段MN必過正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項,當M、N分別在BB1、CC1上運動時,△A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項,若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時DM,DN的長大于BB1,所以△DMN不可能為直角三角形,故錯誤.故選D【點睛】本題考查了命題真假判斷、棱柱的結構特征、空間想象力和思維能力,意在考查對線面、面面平行、垂直的判定和性質的應用,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先將函數在和兩處取得極值,轉化為方程有兩不等實根,且,再令,將問題轉化為直線與曲線有兩交點,且橫坐標滿足,用導數方法研究單調性,作出簡圖,求出時,的值,進而可得出結果.【詳解】因為,所以,又函數在和兩處取得極值,所以是方程的兩不等實根,且,即有兩不等實根,且,令,則直線與曲線有兩交點,且交點橫坐標滿足,又,由得,所以,當時,,即函數在上單調遞增;當,時,,即函數在和上單調遞減;當時,由得,此時,因此,由得.故答案為【點睛】本題主要考查導數的應用,已知函數極值點間的關系求參數的問題,通常需要將函數極值點,轉化為導函數對應方程的根,再轉化為直線與曲線交點的問題來處理,屬于??碱}型.14、【解析】

由自變量所在定義域范圍,代入對應解析式,再由對數加減法運算法則與對數恒等式關系分別求值再相加,即為答案.【詳解】因為函數,則因為,則故故答案為:【點睛】本題考查分段函數求值,屬于簡單題.15、13【解析】

根據點在直線上可求得,由等比中項的定義可構造方程求得結果.【詳解】在上,,成等比數列,,即,解得:.故答案為:.【點睛】本題考查根據三項成等比數列求解參數值的問題,涉及到等比中項的應用,屬于基礎題.16、【解析】

畫出圖形,結合橢圓的定義和題設條件,求得的值,即可求得橢圓的離心率,得到答案.【詳解】如圖所示,設橢圓的長半軸為,半焦距為,因為地球半徑為R,若其近地點?遠地點離地面的距離大約分別是,,可得,解得,所以橢圓的離心率為.故答案為:.【點睛】本題主要考查了橢圓的離心率的求解,其中解答中熟記橢圓的幾何性質,列出方程組,求得的值是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)先由余弦定理求得,再由正弦定理計算即可得到所求值;

(2)運用二倍角的余弦公式和兩角和的正弦公式,化簡可得sinA+sinB=5sinC,運用正弦定理和三角形的面積公式可得a,b的方程組,解方程即可得到所求值.【詳解】解:(1)由余弦定理由正弦定理得(2)由已知得:所以------①又所以------②由①②解得【點睛】本題考查正弦定理、余弦定理和面積公式的運用,以及三角函數的恒等變換,考查化簡整理的運算能力,屬于中檔題.18、(1)(2)11【解析】

(1)利用二倍角公式將式子化簡成,再利用兩角和與差的余弦公式即可求解.(2)利用余弦定理可得,再將平方,利用向量數量積可得,從而可求周長.【詳解】由題解得,所以由余弦定理,,再由解得:所以故的周長為【點睛】本題主要考查了余弦定理解三角形、兩角和與差的余弦公式、需熟記公式,屬于基礎題.19、(1)(2)【解析】

利用零點分區(qū)間法,去掉絕對值符號分組討論求并集,對恒成立,則,由三角不等式,得求解【詳解】解:當時,不等式即為,可得或或,解得或或,則原不等式的解集為若對任意、都有,即為,由,當取得等號,則,由,可得,則的取值范圍是【點睛】本題考查含有兩個絕對值符號的不等式解法及利用三角不等式解恒成立問題.(1)含有兩個絕對值符號的不等式常用解法可用零點分區(qū)間法去掉絕對值符號,將其轉化為與之等價的不含絕對值符號的不等式(組)求解(2)利用三角不等式把不等式恒成立問題轉化為函數最值問題.20、(1)見解析;(2)【解析】

(1)要證明PC⊥面ADE,由已知可得AD⊥PC,只需滿足即可,從而得到點E為中點;(2)求出面ADE的法向量,面PAE的法向量,利用空間向量的數量積,求解二面角P﹣AE﹣D的余弦值.【詳解】(1)法一:要證明PC⊥面ADE,易知AD⊥面PDC,即得AD⊥PC,故只需即可,所以由,即存在點E為PC中點.法二:建立如圖所示的空間直角坐標系D-XYZ,由題意知PD=CD=1,,設,,,由,得,即存在點E為PC中點.(2)由(1)知,,,,,,設面ADE的法向量為,面PAE的法向量為由的法向量為得,得,同理求得所以,故所求二面角P-AE-D的余弦值為.【點睛】本題考查二面角的平面角的求法,考查直線與平面垂直的判定定理的應用,考查空間想象能力以及計算能力.21、(1);(2).【解析】

(1)根據題意,求得,,因而得出,利用降冪公式和二倍角的正弦公式化簡函數,最后利用,求出的最小正周期;(2)由(1)得,再利用整體代入求出函數的值域.【詳解】(1)因為,,所以,,所以函數的最小正周期為.(2)因為,所以,所以,故函數在區(qū)間上的值域為.【點睛】本題考查正弦型函數的周期和值域,運用到向量的坐標運算、降冪公式和二倍角的正弦公式,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論