下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省云浮市普寧興文中學(xué)2022年高三數(shù)學(xué)文月考試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.已知,則A.2
B.
C.3
D.
參考答案:C2.已知復(fù)數(shù)z1=1﹣i,z2=﹣2+3i,則復(fù)數(shù)對(duì)應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限參考答案:C【考點(diǎn)】復(fù)數(shù)的代數(shù)表示法及其幾何意義.【分析】利用復(fù)數(shù)的運(yùn)算法則、幾何意義即可得出.【解答】解:復(fù)數(shù)===對(duì)應(yīng)的點(diǎn)在第三象限.故選:C.3.若函數(shù)有3個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是(
)A.
B.
C.
D.參考答案:A略4.方程至少有一個(gè)負(fù)根的充要條件是
A.
B.
C.
D.或參考答案:C5.已知函數(shù)f(x)=滿足對(duì)任意x1≠x2,都有<0成立,則a的取值范圍是
()A.(0,3) B.(1,3)C.(0,]
D.(-∞,3)參考答案:C6.若sin=,則cosα=()A.﹣ B.﹣ C. D.參考答案:C【考點(diǎn)】二倍角的余弦.【分析】由二倍角的余弦公式可得cosα=1﹣2sin2,代入已知化簡(jiǎn)即可.【解答】解:由二倍角的余弦公式可得cosa=1﹣2sin2=1﹣2×=1﹣=故選C【點(diǎn)評(píng)】本題考查二倍角的余弦公式,把α看做的二倍角是解決問題的關(guān)鍵,屬基礎(chǔ)題.7.,,若,,則的最大值為(
)
A.1
B.2
C.3
D.4參考答案:B略8.在[﹣1,2]內(nèi)任取一個(gè)數(shù)a,則點(diǎn)(1,a)位于x軸下方的概率為()A. B. C. D.參考答案:C【考點(diǎn)】幾何概型.【分析】根據(jù)幾何概型的概率公式即可得到結(jié)論.【解答】解:在[﹣1,2]內(nèi)任取一個(gè)數(shù)a,則點(diǎn)(1,a)位于x軸下方的概率為=,故選:C.9.對(duì)任意a∈R,曲線y=ex(x2+ax+1﹣2a)在點(diǎn)P(0,1﹣2a)處的切線l與圓C:(x﹣1)2+y2=16的位置關(guān)系是()A.相交 B.相切 C.相離 D.以上均有可能參考答案:A【考點(diǎn)】利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程;直線與圓的位置關(guān)系.【分析】求出曲線y=ex(x2+ax+1﹣2a)在點(diǎn)P(0,1﹣2a)處的切線l恒過(guò)定點(diǎn)(﹣2,﹣1),代入:(x﹣1)2+y2﹣16,可得9+1﹣16<0,即定點(diǎn)在圓內(nèi),即可得出結(jié)論.【解答】解:∵y=ex(x2+ax+1﹣2a),∴y′=ex(x2+ax+2x+1﹣a),x=0時(shí),y′=1﹣a,∴曲線y=ex(x2+ax+1﹣2a)在點(diǎn)P(0,1﹣2a)處的切線y﹣1+2a=(1﹣a)x,恒過(guò)定點(diǎn)(﹣2,﹣1),代入:(x﹣1)2+y2﹣16,可得9+1﹣16<0,即定點(diǎn)在圓內(nèi),∴切線l與圓C:(x﹣1)2+y2=16的位置關(guān)系是相交.故選:A.10.設(shè),滿足約束條件,則的取值范圍是(
) A. B. C. D.參考答案:D二、填空題:本大題共7小題,每小題4分,共28分11.已知實(shí)數(shù)a,b,c滿足a2+b2=c2,c≠0,則的取值范圍為.參考答案:【考點(diǎn)】基本不等式.【專題】不等式的解法及應(yīng)用.【分析】實(shí)數(shù)a,b,c滿足a2+b2=c2,c≠0,化為=1,令=cosθ,=sinθ,θ∈[0,2π).可得k===,表示點(diǎn)P(2,0)與圓x2+y2=1上的點(diǎn)連線的在的斜率.利用直線與圓的位置關(guān)系即可得出.【解答】解:∵實(shí)數(shù)a,b,c滿足a2+b2=c2,c≠0,∴=1,令=cosθ,=sinθ,θ∈[0,2π).∴k===,表示點(diǎn)P(2,0)與圓x2+y2=1上的點(diǎn)連線的直線的斜率.設(shè)直線l:y=k(x﹣2),則,化為,解得.∴的取值范圍為.故答案為:.【點(diǎn)評(píng)】本題考查了三角函數(shù)換元法、直線的斜率計(jì)算公式、直線與圓的位置關(guān)系、點(diǎn)到直線的距離公式,考查了轉(zhuǎn)化方法,考查了推理能力與計(jì)算能力,屬于中檔題.12.定義函數(shù),其中表示不小于的最小整數(shù),如,.當(dāng),時(shí),函數(shù)的值域?yàn)?,記集合中元素的個(gè)數(shù)為,則________.參考答案:略13.在底面是邊長(zhǎng)為的正方形的四棱錐P-ABCD中,頂點(diǎn)P在底面的射影H為正方形ABCD的中心,異面直線PB與AD所成角的正切值為2,若四棱錐P-ABCD的內(nèi)切球半徑為r,外接球的半徑為R,則________.參考答案:【分析】設(shè),為,的中點(diǎn),先求出四棱錐內(nèi)切球的半徑,再求出外接球的半徑,即得解.【詳解】如圖,,為,的中點(diǎn),由題意,為正四棱錐,底邊長(zhǎng)為2,,即為與所成角,可得斜高為2,為正三角形,正四棱錐的內(nèi)切球半徑即為的內(nèi)切圓半徑,所以可得,設(shè)為外接球球心,在中,,解得,,故答案為:.【點(diǎn)睛】本題主要考查多面體與球的內(nèi)切和外接問題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.14.將矩形繞邊旋轉(zhuǎn)一周得到一個(gè)圓柱,,,圓柱上底面圓心為,為下底面圓的一個(gè)內(nèi)接直角三角形,則三棱錐體積的最大值是
.參考答案:4試題分析:考點(diǎn):三棱錐體積【方法點(diǎn)睛】(1)求錐體的體積要充分利用多面體的截面和旋轉(zhuǎn)體的軸截面,將空間問題轉(zhuǎn)化為平面問題求解,注意求體積的一些特殊方法——分割法、補(bǔ)形法、等體積法.(2)涉及球與棱柱、棱錐的切、接問題時(shí),一般過(guò)球心及多面體中的特殊點(diǎn)(一般為接、切點(diǎn))或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識(shí)尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.15.某單位有840名職工,現(xiàn)采用系統(tǒng)抽樣方法,抽取42人做問卷調(diào)查,將840人按1,2,…,840隨機(jī)編號(hào),則抽取的42人中,編號(hào)落入?yún)^(qū)間[481,720]的人數(shù)為.參考答案:12【考點(diǎn)】古典概型及其概率計(jì)算公式.【分析】根據(jù)系統(tǒng)抽樣方法,從840人中抽取42人,那么從20人抽取1人.從而得出從編號(hào)481~720共240人中抽取的人數(shù)即可.【解答】解:使用系統(tǒng)抽樣方法,從840人中抽取42人,即從20人抽取1人.∴從編號(hào)1~480的人中,恰好抽取=24人,接著從編號(hào)481~720共240人中抽取=12人.故答案為:12.16.已知平面上的向量、滿足,,設(shè)向量,則的最小值是
參考答案:217.以坐標(biāo)原點(diǎn)O為圓心的圓與拋物線及其準(zhǔn)線分別交于點(diǎn)A,B和C,D,若|AB|=|CD|,則圓O的方程是
.參考答案:設(shè),圓O半徑為r,則∵,∴A或B的坐標(biāo)為,∴∴,解得,∴圓O的方程為:故答案為:
三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟18.在極坐標(biāo)系中,直線與曲線()相切,求的值.參考答案:以極點(diǎn)O為原點(diǎn),極軸為軸建立平面直角坐標(biāo)系,由,得,得直線的直角坐標(biāo)方程為.
………………5分曲線,即圓,所以圓心到直線的距離為.因?yàn)橹本€與曲線()相切,所以,即.
……………10分19.(本小題滿分12分)(Ⅰ)一動(dòng)圓與圓相外切,與圓相內(nèi)切求動(dòng)圓圓心的軌跡曲線E的方程,并說(shuō)明它是什么曲線。(Ⅱ)過(guò)點(diǎn)作一直線與曲線E交與A,B兩點(diǎn),若,求此時(shí)直線的方程。參考答案:解:(1)設(shè)動(dòng)圓圓心的坐標(biāo)為,半徑為r又內(nèi)切和外切的幾何意義
所以所求曲線軌跡為橢圓,方程為:
⑵設(shè)直線方程為直線與橢圓交與A
,B聯(lián)立方程組把直線方程代入橢圓方程化簡(jiǎn)整理得
①又弦長(zhǎng)公式,代入解的所以直線方程為
20.已知△ABC中,,,.(1)求△ABC的面積;(2)求AB邊上的中線CD的長(zhǎng).參考答案:(1)28(2)【分析】(1)由即可求得,再利用誘導(dǎo)公式及兩角和的正弦公式即可求得,利用正弦定理即可求得,再利用三角形面積公式計(jì)算得解。(2)在中,由余弦定理列方程即可得解?!驹斀狻拷猓海?)且,∴.在中,由正弦定理得,即,解得.所以的面積為(2)在中,,所以由余弦定理得,所以.【點(diǎn)睛】本題主要考查了正弦定理及余弦定理,還考查了兩角和的正弦公式,考查了同角三角函數(shù)基本關(guān)系,考查計(jì)算能力,屬于中檔題。21.設(shè)等差數(shù)列的前項(xiàng)和為,已知,.(1)求;(2)若從中抽取一個(gè)公比為的等比數(shù)列,其中,且,.①當(dāng)取最小值時(shí),求的通項(xiàng)公式;②若關(guān)于的不等式有解,試求的值.參考答案:(1),(2)①,②試題解析:(1)設(shè)等差數(shù)列的公差為,則,解得,……2分
22.已知某單位由50名職工,將全體職工隨機(jī)按1﹣50編號(hào),并且按編號(hào)順序平均分成10組,先要從中抽取10名職工,各組內(nèi)抽取的編號(hào)依次增加5進(jìn)行系統(tǒng)抽樣.(Ⅰ)若第五組抽出的號(hào)碼為22,寫出所有被抽出職工的號(hào)碼;(Ⅱ)分別統(tǒng)計(jì)這10名職工的體重(單位:公斤),獲得體重?cái)?shù)據(jù)的莖葉圖如圖所示,求該樣本的平均數(shù);(Ⅲ)在(Ⅱ)的條件下,從體重不輕于73公斤(≥73公斤)的職工中隨機(jī)抽取兩名職工,求被抽到的兩名職工的體重之和等于154公斤的概率.參考答案:考點(diǎn):列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率;莖葉圖.專題:概率與統(tǒng)計(jì).分析:(Ⅰ)根據(jù)各組內(nèi)抽取的編號(hào)依次增加5進(jìn)行系統(tǒng)抽樣,可得抽出的10名職工的號(hào)碼,(Ⅱ)計(jì)算10名職工的平均體重,(Ⅲ)寫出從10名職工中隨機(jī)抽取兩名體重不輕于73公斤的職工的取法,從而可求被抽到的兩名職工的體重之和等于154公斤的概率..解答: 解:(I)由題意,第5組抽出的號(hào)碼為22.因?yàn)?+5×(5﹣1)=22,所以第1組抽出的號(hào)碼應(yīng)該為2,抽出的10名職工的號(hào)碼依次分別為:2,7,12,17,22,27,32,37,42,47.(II)這10名職工的平均體重為:=×(81+70+
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中樞興奮藥相關(guān)行業(yè)投資規(guī)劃報(bào)告
- 藥事委員會(huì)用藥安全監(jiān)測(cè)計(jì)劃
- PiCCO監(jiān)測(cè)技術(shù)操作管理專家共識(shí)2023解讀
- 2024-2025學(xué)年河南省信陽(yáng)市息縣人教版五年級(jí)上冊(cè)期中學(xué)業(yè)質(zhì)量監(jiān)測(cè)數(shù)學(xué)試卷(原卷版)-A4
- 初中英語(yǔ)語(yǔ)法講解課件
- 法律案例分析報(bào)告范文
- 服裝的開題報(bào)告范文
- 手術(shù)后的情緒調(diào)適方法
- 2025年西寧貨運(yùn)從業(yè)資格證年考試題
- 2025年嘉興貨運(yùn)從業(yè)資格考試題目
- 河北省藥品流通非現(xiàn)場(chǎng)監(jiān)管藥品流通追溯系統(tǒng)操作手冊(cè)
- 2024年四川省網(wǎng)格員招聘理論考試復(fù)習(xí)題庫(kù)(含答案)
- (2024年)(完整版)24式太極拳教案全集
- 信訪維穩(wěn)工作培訓(xùn)
- 中建測(cè)評(píng)2024二測(cè)題庫(kù)及答案
- 低代碼開發(fā)智慧樹知到期末考試答案2024年
- 考古勘探安全方案
- 山東省淄博市2023-2024學(xué)年高一上學(xué)期期末考試地理試題
- 創(chuàng)業(yè)修煉智慧樹知到期末考試答案2024年
- 離職分析課件
- 學(xué)前教育中的體驗(yàn)式教學(xué)與實(shí)踐
評(píng)論
0/150
提交評(píng)論