版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.已知是方程x2﹣2x+c=0的一個根,則c的值是()A.﹣3 B.3 C. D.22.如圖,已知AC是⊙O的直徑,點B在圓周上(不與A、C重合),點D在AC的延長線上,連接BD交⊙O于點E,若∠AOB=3∠ADB,則()A.DE=EB B.DE=EB C.DE=DO D.DE=OB3.已知關(guān)于x的一元二次方程xaxb0ab的兩個根為x1、x2,x1x2則實數(shù)a、b、x1、x2的大小關(guān)系為()A.a(chǎn)x1bx2 B.a(chǎn)x1x2b C.x1ax2b D.x1abx24.如圖,Rt△ABC中,AB=9,BC=6,∠B=90°,將△ABC折疊,使A點與BC的中點D重合,折痕為PQ,則△PQD的面積為()A. B. C. D.5.如圖所示,AB∥CD,∠A=50°,∠C=27°,則∠AEC的大小應為()A.23° B.70° C.77° D.80°6.剪紙是中國特有的民間藝術(shù).以下四個剪紙圖案中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.7.對于反比例函數(shù),下列說法不正確的是A.圖象分布在第二、四象限B.當時,隨的增大而增大C.圖象經(jīng)過點(1,-2)D.若點,都在圖象上,且,則8.點M(2,-3)關(guān)于原點對稱的點N的坐標是:()A.(-2,-3) B.(-2,3) C.(2,3) D.(-3,2)9.計算的結(jié)果是()A.-3 B.9 C.3 D.-910.一元二次方程的左邊配成完全平方后所得方程為()A. B. C. D.11.如圖,二次函數(shù)的圖象,則下列結(jié)論正確的是()①;②;③;④A.①②③ B.②③④ C.①③④ D.①②③④12.若二次函數(shù)的x與y的部分對應值如下表,則當時,y的值為xy353A.5 B. C. D.二、填空題(每題4分,共24分)13.為了估計一個不透明的袋子中白球的數(shù)量袋中只有白球,現(xiàn)將5個紅球放進去這些球除顏色外均相同隨機摸出一個球記下顏色后放回每次摸球前先將袋中的球搖勻,通過多次重復摸球試驗后,發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定于,由此可估計袋中白球的個數(shù)大約為______.14.因式分解x3-9x=__________.15.用紙板制作了一個圓錐模型,它的底面半徑為1,高為,則這個圓錐的側(cè)面積為_________.16.已知小明身高,在某一時刻測得他站立在陽光下的影長為.若當他把手臂豎直舉起時,測得影長為,則小明舉起的手臂超出頭頂______.17.若關(guān)于的一元二次方程有實數(shù)根,則的取值范圍是__________.18.已知線段a、b、c,其中c是a、b的比例中項,若a=2cm,b=8cm,則線段c=_____cm.三、解答題(共78分)19.(8分)如圖,已知直線y=x+2與x軸、y軸分別交于點B,C,拋物線y=x2+bx+c過點B、C,且與x軸交于另一個點A.(1)求該拋物線的表達式;(2)若點P是x軸上方拋物線上一點,連接OP.①若OP與線段BC交于點D,則當D為OP中點時,求出點P坐標.②在拋物線上是否存在點P,使得∠POC=∠ACO若存在,求出點P坐標;若不存在,請說明理由.20.(8分)在△ABC中,P為邊AB上一點.(1)如圖1,若∠ACP=∠B,求證:AC2=AP·AB;(2)若M為CP的中點,AC=2,①如圖2,若∠PBM=∠ACP,AB=3,求BP的長;②如圖3,若∠ABC=45°,∠A=∠BMP=60°,直接寫出BP的長.21.(8分)如圖,在中,,矩形的頂點、分別在邊、上,、在邊上.(1)求證:∽;(2)若,則面積與面積的比為.22.(10分)如圖1,BC是⊙O的直徑,點A在⊙O上,AD⊥BC,垂足為D,,BE分別交AD、AC于點F、G.(1)判斷△FAG的形狀,并說明理由;(2)如圖2,若點E和點A在BC的兩側(cè),BE、AC的延長線交于點G,AD的延長線交BE于點F,其余條件不變,(1)中的結(jié)論還成立嗎?請說明理由;(3)在(2)的條件下,若BG=26,BD﹣DF=7,求AB的長.23.(10分)如圖,拋物線y=ax2+bx+6與x軸交于點A(6,0),B(﹣1,0),與y軸交于點C.(1)求拋物線的解析式;(2)若點M為該拋物線對稱軸上一點,當CM+BM最小時,求點M的坐標.(3)拋物線上是否存在點P,使△BCP為等腰三角形?若存在,有幾個?并請在圖中畫出所有符合條件的點P,(保留作圖痕跡);若不存在,說明理由.24.(10分)如圖有A、B兩個大小均勻的轉(zhuǎn)盤,其中A轉(zhuǎn)盤被分成3等份,B轉(zhuǎn)盤被分成4等份,并在每一份內(nèi)標上數(shù)字.小明和小紅同時各轉(zhuǎn)動其中一個轉(zhuǎn)盤,轉(zhuǎn)盤停止后(當指針指在邊界線時視為無效,重轉(zhuǎn)),若將A轉(zhuǎn)盤指針指向的數(shù)字記作一次函數(shù)表達式中的k,將B轉(zhuǎn)盤指針指向的數(shù)字記作一次函數(shù)表達式中的b.(1)請用列表或畫樹狀圖的方法寫出所有的可能;(2)求一次函數(shù)y=kx+b的圖象經(jīng)過一、二、四象限的概率.25.(12分)某地2016年為做好“精準扶貧”,投入資金1000萬元用于異地安置,并規(guī)劃投入資金逐年增加,2018年在2016年的基礎(chǔ)上增加投入資金1250萬元.(1)從2016年到2018年,該地投入異地安置資金的年平均增長率為多少?(2)在2018年異地安置的具體實施中,該地計劃投入資金不低于400萬元用于優(yōu)先搬遷租房獎勵,規(guī)定前1000戶(含第1000戶)每戶每天獎勵8元,1000戶以后每戶每天補助5元,按租房400天計算,試求今年該地至少有多少戶享受到優(yōu)先搬遷租房獎勵?26.如圖,△ABC的中線AD、BE、CF相交于點G,H、I分別是BG、CG的中點.(1)求證:四邊形EFHI是平行四邊形;(2)①當AD與BC滿足條件時,四邊形EFHI是矩形;②當AG與BC滿足條件時,四邊形EFHI是菱形.
參考答案一、選擇題(每題4分,共48分)1、B【分析】把x=代入方程得到關(guān)于c的方程,然后解方程即可.【詳解】解:把x=代入方程x2﹣2x+c=0,得()2﹣2×+c=0,所以c=6﹣1=1.故選:B.【點睛】本題考查了一元二次方程根的性質(zhì),解答關(guān)鍵是將方程的根代入原方程求出字母系數(shù).2、D【解析】解:連接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故選D.3、D【分析】根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出答案.【詳解】如圖,設(shè)函數(shù)y=(x?a)(x?b),當y=0時,x=a或x=b,當y=時,由題意可知:(x?a)(x?b)?=0(a<b)的兩個根為x1、x2,由于拋物線開口向上,由拋物線的圖象可知:x1<a<b<x2故選:D.【點睛】本題考查一元二次方程,解題的關(guān)鍵是正確理解一元二次方程與二次函數(shù)之間的關(guān)系,本題屬于中等題型.4、D【分析】由折疊的性質(zhì)可得AQ=QD,AP=PD,由勾股定理可求AQ的長,由銳角三角函數(shù)分別求出AP,HQ的長,即可求解.【詳解】解:過點D作DN⊥AC于N,∵點D是BC中點,∴BD=3,∵將△ABC折疊,∴AQ=QD,AP=PD,∵AB=9,BC=6,∠B=90°,∴AC=,∵sin∠C==,∴DN=,∵cos∠C=,∴CN=,∴AN=,∵PD2=PN2+DN2,∴AP2=(﹣AP)2+,∴AP=,∵QD2=DB2+QB2,∴AQ2=(9﹣AQ)2+9,∴AQ=5,∵sin∠A==,∴HQ==∵∴△PQD的面積=△APQ的面積=××=,故選:D.【點睛】本題考查了翻折變換,勾股定理,三角形面積公式,銳角三角函數(shù),求出HQ的長是本題的關(guān)鍵.5、C【分析】根據(jù)平行線的性質(zhì)可求解∠ABC的度數(shù),利用三角形的內(nèi)角和定理及平角的定義可求解.【詳解】解:∵AB∥CD,∠C=27°,∴∠ABC=∠C=27°,∵∠A=50°,∴∠AEB=180°﹣27°﹣50°=103°,∴∠AEC=180°﹣∠AEB=77°,故選:C.【點睛】本題主要考查平行線的性質(zhì),三角形的內(nèi)角和定理,掌握平行線的性質(zhì)是解題的關(guān)鍵.6、B【解析】根據(jù)軸對稱圖形的定義以及中心對稱圖形的定義分別判斷即可得出答案.【詳解】解:A、此圖形是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;
B、此圖形是軸對稱圖形,也是中心對稱圖形,故此選項正確;
C、此圖形不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;D、此圖形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤.故選:B.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的定義,熟練掌握其定義是解決問題的關(guān)鍵.7、D【分析】根據(jù)反比例函數(shù)圖象的性質(zhì)對各選項分析判斷后利用排除法求解.【詳解】A.k=?2<0,∴它的圖象在第二、四象限,故本選項正確;B.k=?2<0,當x>0時,y隨x的增大而增大,故本選項正確;C.∵,∴點(1,?2)在它的圖象上,故本選項正確;D.若點A(x1,y1),B(x2,y2)都在圖象上,,若x1<0<x2,則y2<y1,故本選項錯誤.故選:D.【點睛】本題考查了反比例函數(shù)的圖象與性質(zhì),掌握反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.8、B【解析】試題解析:已知點M(2,-3),則點M關(guān)于原點對稱的點的坐標是(-2,3),故選B.9、C【解析】直接計算平方即可.【詳解】故選C.【點睛】本題考查了二次根號的平方,比較簡單.10、B【解析】把常數(shù)項﹣5移項后,應該在左右兩邊同時加上一次項系數(shù)﹣2的一半的平方.【詳解】把方程x2﹣2x﹣5=0的常數(shù)項移到等號的右邊,得到x2﹣2x=5,方程兩邊同時加上一次項系數(shù)一半的平方,得到:x2﹣2x+(﹣1)2=5+(﹣1)2,配方得:(x﹣1)2=1.故選B.【點睛】本題考查了配方法解一元二次方程.配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).11、B【分析】由二次函數(shù)的開口方向,對稱軸0<x<1,以及二次函數(shù)與y的交點在x軸的上方,與x軸有兩個交點等條件來判斷各結(jié)論的正誤即可.【詳解】∵二次函數(shù)的開口向下,與y軸的交點在y軸的正半軸,∴a<0,c>0,故④正確;∵0<?<1,∴b>0,故①錯誤;當x=?1時,y=a?b+c<0,∴a+c<b,故③正確;∵二次函數(shù)與x軸有兩個交點,∴△=b2?4ac>0,故②正確正確的有3個,故選:C.【點睛】此題主要考查了二次函數(shù)的圖象與系數(shù)的關(guān)系,要熟練掌握,解答此題的關(guān)鍵是要明確:①二次項系數(shù)a決定拋物線的開口方向和大?。寒攁>0時,拋物線向上開口;當a<0時,拋物線向下開口;②一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右.(簡稱:左同右異)③常數(shù)項c決定拋物線與y軸交點.拋物線與y軸交于(0,c).12、D【分析】由表可知,拋物線的對稱軸為,頂點為,再用待定系數(shù)法求得二次函數(shù)的解析式,再把代入即可求得y的值.【詳解】設(shè)二次函數(shù)的解析式為,當或時,,由拋物線的對稱性可知,,,把代入得,,二次函數(shù)的解析式為,當時,.故選D.【點睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式,拋物線是軸對稱圖形,由表看出拋物線的對稱軸為,頂點為,是本題的關(guān)鍵.二、填空題(每題4分,共24分)13、20個【解析】∵通過大量重復摸球試驗后發(fā)現(xiàn),摸到紅球的頻率是0.2,口袋中有5個紅球,∵假設(shè)有x個白球,∴=0.2,解得:x=20,∴口袋中有白球約有20個.故答案為20個.14、x(x+3)(x-3)【分析】先提取公因式x,再利用平方差公式進行分解.【詳解】解:x3-9x,=x(x2-9),=x(x+3)(x-3).【點睛】本題主要考查提公因式法分解因式和利用平方差公式分解因式,本題要進行二次分解,分解因式要徹底.15、【分析】根據(jù)圓錐的側(cè)面積公式計算即可得到結(jié)果.【詳解】解:根據(jù)題意得:S=π×1×=3π,
故填:3π.【點睛】此題考查了圓錐的計算,熟練掌握圓錐的側(cè)面積公式是解本題的關(guān)鍵.16、0.54【分析】在同一時刻,物體的高度和影長成比例,根據(jù)此規(guī)律列方程求解.【詳解】解:設(shè)小明舉起的手臂超出頭頂xm,根據(jù)題意得,,解得x=0.54即舉起的手臂超出頭頂0.54m.故答案為:0.54.【點睛】本題考查同一時刻物體的高度和影長成比例的投影規(guī)律,根據(jù)規(guī)律列比例式求解是解答此題的關(guān)鍵.,17、【分析】一元二次方程有實數(shù)根,即【詳解】解:一元二次方程有實數(shù)根解得【點睛】本題考查與系數(shù)的關(guān)系.18、4【分析】根據(jù)比例中項的定義,列出比例式即可求解.【詳解】∵線段c是a、b的比例中項,線段a=2cm,b=8cm,∴=,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍去),∴線段c=4cm.故答案為:4【點睛】本題考查了比例中項的概念:當兩個比例內(nèi)項相同時,就叫比例中項.這里注意線段不能是負數(shù).三、解答題(共78分)19、(2)y=﹣x2+x+2;(2)①點P坐標為(2,3);②存在點P(,﹣2)或(,﹣7)使得∠POC=∠ACO【分析】(2)與x軸、y軸分別交于點B(4,0)、C(0,2),由題意可得即可求解;(2)①過點P作PE∥OC,交BC于點E.根據(jù)題意得出△OCD≌△PED,從而得出PE=OC=2,再根據(jù)即可求解;②當點P在y軸右側(cè),PO∥AC時,∠POC=∠ACO.拋物線與x軸交于A,B兩點,點A在點B左側(cè),則點A坐標為(-2,0).則直線AC的解析式為y=2x+2.直線OP的解析式為y=2x,即可求解;當點P在y軸右側(cè),設(shè)OP與直線AC交于點G,當CG=OG時,∠POC=∠ACO,根據(jù)等腰三角形三線合一,則CF=OF=2,可得:點G坐標為即可求解.【詳解】(2)∵y=﹣x+2與x軸、y軸分別交于點B(4,0)、C(0,2).由題意可得,解得:,∴拋物線的表達式為y=﹣x2+x+2;(2)①如圖,過點P作PE∥OC,交BC于點E.∵點D為OP的中點,∴△OCD≌△PED(AAS),∴PE=OC=2,設(shè)點P坐標為(m,﹣m2+m+2),點E坐標為(m,﹣m+2),則PE=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m=2,解得m2=m2=2.∴點P坐標為(2,3);②存在點P,使得∠POC=∠ACO.理由:分兩種情況討論.如上圖,當點P在y軸右側(cè),PO∥AC時,∠POC=∠ACO.∵拋物線與x軸交于A,B兩點,點A在點B左側(cè),∴點A坐標為(﹣2,0).∴直線AC的解析式為y=2x+2.∴直線OP的解析式為y=2x,解方程組,解得:x=(舍去負值)∴點P坐標為(,﹣2).如圖,當點P在y軸右側(cè),設(shè)OP與直線AC交于點G,當CG=OG時∠POC=∠ACO,過點G作GF⊥OC,垂足為F.根據(jù)等腰三角形三線合一,則CF=OF=2.∴可得點G坐標為(﹣,2)∴直線OG的解析式為y=﹣2x;把y=﹣2x代入拋物線表達式并解得x=(不合題意值已舍去).∴點P坐標為(,﹣7).綜上所述,存在點P(,﹣2)或(,﹣7)使得∠POC=∠ACO.【點睛】本題考查的是二次函數(shù)綜合運用,涉及到一次函數(shù)、三角形全等、解直角三角形、等腰三角形的性質(zhì)等,其中(2)②,要注意分類求解,避免遺漏.20、(1)證明見解析;(2)①BP=;②BP=.【解析】試題分析:(1)根據(jù)已知條件易證△ACP∽△ABC,由相似三角形的性質(zhì)即可證得結(jié)論;(2)①如圖,作CQ∥BM交AB延長線于Q,設(shè)BP=x,則PQ=2x,易證△APC∽△ACQ,所以AC2=AP·AQ,由此列方程,解方程即可求得BP的長;②如圖:作CQ⊥AB于點Q,作CP0=CP交AB于點P0,再證△AP0C∽△MPB,(2)的方法求得AP0的長,即可得BP的長.試題解析:(1)證明:∵∠ACP=∠B,∠BAC=∠CAP,∴△ACP∽△ABC,∴AC:AB=AP:AC,∴AC2=AP·AB;(2)①如圖,作CQ∥BM交AB延長線于Q,設(shè)BP=x,則PQ=2x∵∠PBM=∠ACP,∠PAC=∠CAQ,∴△APC∽△ACQ,由AC2=AP·AQ得:22=(3-x)(3+x),∴x=即BP=;②如圖:作CQ⊥AB于點Q,作CP0=CP交AB于點P0,∵AC=2,∴AQ=1,CQ=BQ=,設(shè)AP0=x,P0Q=PQ=1-x,BP=-1+x,∵∠BPM=∠CP0A,∠BMP=∠CAP0,∴△AP0C∽△MPB,∴,∴MP?P0C=AP0?BP=x(-1+x),解得x=∴BP=-1+=.考點:三角形綜合題.21、(1)見解析;(2)1.【分析】(1)先證∠AGD=∠B,再根據(jù)∠ADG=∠BEF=90°,即可證明;(2)由(1)得∽,則△ADG面積與△BEF面積的比==1.【詳解】(1)證:在矩形中,=90°∴=90°∵=90°∴=90°∴在和中∵,=90°∴∽(2)解:∵四邊形DEFG為矩形,∴GD=EF,∵△ADG∽△FEB,∴故答案為1.【點睛】本題考查了相似三角形的判定與性質(zhì),根據(jù)題意證得△ADG∽△FEB是解答本題的關(guān)鍵.22、(1)等腰三角形,理由見解析;(2)成立,理由見解析;(3).【分析】(1)首先根據(jù)圓周角定理及垂直的定義得到,,從而得到,然后利用等弧對等角、等角對等邊等知識得到,從而證得,判定等腰三角形;(2)成立,證明方法同(1);(3)首先根據(jù)上題得到,從而利用已知條件得到,然后利用勾股定理得到,,從而求得,最后求得【詳解】解:(1)結(jié)論:△FAG是等腰三角形;理由:如圖1,為直徑,,,,,,,,,,,,,是等腰三角形;(2)(1)中的結(jié)論成立;為直徑,,,,,,,,,,,,,是等腰三角形;(3)由(2)得:,,,解得:,,,.【點睛】此題是圓的綜合題,主要考查了圓周角定理,垂徑定理、勾股定理,等腰三角形的判定和性質(zhì),解本題的關(guān)鍵是判斷出是等腰三角形,是一道難度不大的三角形和圓的結(jié)合的題目.23、(1)y=﹣x2+5x+6;(2)M(,);(3)存在5個滿足條件的P點,尺規(guī)作圖見解析【分析】(1)將A(6,0),B(﹣1,0)代入y=ax2+bx+6即可;(2)作點C關(guān)于對稱軸x=的對稱點C',連接BC'與對稱軸交于點M,則CM+BM=C'M+BM=BC最小;求出BC'的直線解析式為y=x+1,即可求M點;(3)根據(jù)等腰三角形腰的情況分類討論,然后分別尺規(guī)作圖即可.【詳解】解:(1)將A(6,0),B(﹣1,0)代入y=ax2+bx+6,可得a=﹣1,b=5,∴y=﹣x2+5x+6;(2)作點C關(guān)于對稱軸x=的對稱點C',連接BC'與對稱軸交于點M,根據(jù)兩點之間線段最短,則CM+BM=C'M+BM=C'B最小,∵C(0,6),∴C'(5,6),設(shè)直線BC'的解析式為y=kx+b將B(﹣1,0)和C'(5,6)代入解析式,得解得:∴直線BC'的解析式為y=x+1,將x=代入,解得y=∴M(,);(3)存在5個滿足條件的P點;尺規(guī)作圖如下:①若CB=CP時,以C為原點,BC的長為半徑作圓,交拋物線與點P,如圖1所示,此時點P有兩種情況;②若BC=BP時,以B為原點,BC的長為半徑作圓,交拋物線與點P,如圖2所示,此時點P即為所求;③若BP=CP,則點P在BC的中垂線上,作BC的中垂線,交拋物線與點P,如圖3所示,此時點P有兩種情況;故存在5個滿足條件的P點.【點睛】此題考查的是求二次函數(shù)的解析式、求兩線段之和的最小值和尺規(guī)作圖,掌握用待定系數(shù)法求二次函數(shù)的解析式、兩點之間線段最短和用尺規(guī)作圖作等腰三角形是解決此題的關(guān)鍵.24、(1)答案見解析;(2).【分析】(1)k可能的取值為-1、-2、-3,b可能的取值為-1、-2、3、4,所以將所有等可能出現(xiàn)的情況用列表方式表示出來即可.(2)判斷出一次函數(shù)y=kx+b經(jīng)過一、二、四象限時k、b的正負,在列表中找出滿足條件的情況,利用概率的基本概念即可求出一次函數(shù)y=kx+b經(jīng)過一、二、四象限的概率.【詳解】解:(1)列表如下:所有等可能的情況有12種;(2)一次函數(shù)y=kx+b的圖象經(jīng)過一、二、四象限時,k<0,b>0,情況有4種,則P==.25、(1)從2016年到2018年,該地投入異地安置資金的年平均增長率為50%;(2)今年該地至少有1400戶享受到優(yōu)先搬遷租房獎勵.【分析】(1)根據(jù)”2016年投入資金年投入資金”列方程求解即可;(2)根據(jù)題意,享受獎勵的搬遷戶分為前1000戶和1000戶之后的部分,可以設(shè)搬遷戶總數(shù)為,則有前1000戶享受獎勵總額+10
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024農(nóng)村荒山租賃合同
- 2024山林租賃合同范文
- 2024建設(shè)工程勘察合同范本怎樣寫
- 2024訂貨購銷合同范本范文
- 2024的廣播電視服務合同
- 2024正式的產(chǎn)品代理合同樣書
- 深圳大學《油畫基礎(chǔ)》2022-2023學年第一學期期末試卷
- 阿姨照顧小孩合同(2篇)
- 魚池合同范本(2篇)
- 初一下學期新學期計劃范文(7篇)
- 小學體育水平一《走與游戲》教學設(shè)計
- 秋日私語(完整精確版)克萊德曼(原版)鋼琴雙手簡譜 鋼琴譜
- 辦公室室內(nèi)裝修工程技術(shù)規(guī)范
- 鹽酸安全知識培訓
- 萬盛關(guān)于成立醫(yī)療設(shè)備公司組建方案(參考模板)
- 消防安全巡查記錄臺帳(共2頁)
- 科技特派員工作調(diào)研報告
- 中波廣播發(fā)送系統(tǒng)概述
- 縣疾控中心中層干部競聘上崗實施方案
- 急性心肌梗死精美PPt完整版
- 物業(yè)日常巡查記錄表.doc
評論
0/150
提交評論