




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Chapter4:ChannelandChannelCapacity
ThegoaltoachieveTheunderstandingofthegoalandcontenthowInfo.TheorystudiesthechannelUnderstandthebasicclassificationofthechannelandgraspthebasicdescriptionmethodofthechannelGrasptheconceptofchannelcapacity/Channelcapacitypricefunction,aswellasrelationsbetweenthisconceptandmutualinfo.,channelinputprobabilitydistribution,channeltransferfunctionCancalculatethechannelcapacity/Thechannelcapacitypricefunction(symmetricaldiscretechannel,additiveGaussnoisechannelwithoutmemory)ofsimplechannelUnderstandthefunctionofthechannelcapacity/CapacitypricefunctionincommunicationssystemresearchDefinitionquestionEntropyEntropyratefunctioninlosslesssourcecodingtheoremMutualinfo.ChannelCapacityfunctioninsourcecodingtheoremReview–natureofmutualinfo.function:Nature.1Relationshipbetweenmutualinfo.andchannelinputprobabilitydistributionNature1:I(X;Y)isaconvexfunctionofthechannelinputprobabilitydistributionp(x).I(X;Y)p(x)Review–natureofmutualinfo.function:Nature.2
RelationshipbetweenInfo.contentandchanneltransitionprobabilitydistribution
Nature2:I(X;Y)isaconcavefunctionofchanneltransitionprobabilitydistributesp(y/X).I(X;Y)p(y/x)Review–natureofmutualinfo.function:Nature.3RelationshipbetweenInfo.contentandchannelinputmarkrelevancy
Nature3:ThechannelinputisdiscreteandwithoutmemoryReview–natureofmutualinfo.function:Nature.4
RelationshipbetweenInfo.contentandchannelinputmarkrelevancyNature4:ThechannelhasnomemoryReview–natureofmutualinfo.function:Nature.5Deductionofnature3andnature4:
Thechannelinputandthechannelthemselvesarealldiscreteandwithoutmemory.ChannelandChannelCapacityOutlineclassificationanddescriptionofthechannelThediscretechannelwithoutmemoryanditsthecapacityContinualchannelanditscapacityCapacitypricefunctionC(F)
§4.1:OutlineThecontentofInfo.TheoryresearchingonthechannelWhat’schannel?ThefunctionofchannelThegoalofresearchingthechannel§5.1:Outline-1ContentthattheInfo.Theorystudiesonthechannel:Channelmodeling:describewithtwoappropriateinput/outputsstochasticprocessesChannelcapacityvariousmeansoftakingfullyadvantageofthechannelcapacityunderdissimilarcondition§5.1:Outline-2Whatischannel? Thechannelisacarrierwhichtransmitsmessages——apassagewhichsignalpassesthrough. Theinformationisabstract,thechannelthenisconcrete.Forinstance:Iftwopeopleconverse,theairisthechannel;Ifthetwocalleachother,thetelephonelineisthechannel;Ifwewatchthetelevision,listentotheradio,thespacetoreceiveandsendisthechannel.§5.1:Outline-3Thefunctionofchannel Thechannelmainlybeusedintransmittingandstoringdatatheinfo.system,butincommunicationssystemmainlybeusedintransmitting.§5.1:Outline-4thegoaltoresearchchannelRealizevalidityandreliabilityofintelligencetransmissionValidity:FullyusethechannelcapacityReliability:Reducestheerrorratethroughthechannelcoding
Studyingthechannelinthecommunicationssystemismainlytodescribe,measure,analyzedifferenttypesofchannel,calculatetheircapacity,namely,thelimittransmissioncapacity,andanalyzetheircharacteristic.Thecommunicationtechnologymainlyresearches--Thephysicalrulewhichthesignalfollowswhiletransmittinginthechannel,namelytransmissioncharacteristicTheInfo.Theorymainlyresearches--info.transmissionquestion(hypothesisisthatthetransmissioncharacteristicsareknown)§4.2:ClassificationanddescriptionofthechannelClassificationDescription§4.2:Classificationanddescriptionofchannel-1classification projectphysics——transmissionmediumtype; mathematicsdescriptionway——descriptionwayofsignalanddisturbance;parametertypeofthechannelitself——changeableandpermanentparameter;usertype——singleuserandmulti-user; §4.2:Classificationanddescriptionofchannel-2§4.2:Classificationanddescriptionofchannel-3§4.2:Classificationanddescriptionofchannel-4§4.2:Classificationanddescriptionofchannel-5§4.2:Classificationanddescriptionofchannel-6DescriptionofchannelThechannelmayquotethreegroupsofvariablestodescribe:Channelinputprobabilityspace:Channeloutputprobabilityspace:Channelprobabilityshiftmatrix:PNamely:{P},Itcanbesimplified:.§4.2:Classificationanddescriptionofchannel-7其中:而 而§4.2:Classificationanddescriptionofchannel-8When
K=1,degeneratestothe
singlemessage(mark)channel;Furtherwhen
n=m=2,degeneratestothebinarysinglemessagechannel.Ifitsatisfiedsymmetry,namelyconstitutesmostcommonlyusedbinarysinglemessagesymmetricalchannelBSC:And:,,§4.3:DiscretechannelwithoutmemoryanditschannelcapacityDiscretechannelwithoutmemoryanditschannelcapacityCalculationofchannelcapacityofthediscretechannelwithoutmemoryChannelcapacitytheoremofthediscretechannelwithoutmemoryChannelcapacityoftheSymmetricdiscretechannelwithoutmemoryPhysicalsignificanceofShannonFirstTheorem§4.3:Discretechannelwithoutmemoryanditschannelcapacity-1Channelofdiscretemessagesequence§4.3:Discretechannelwithoutmemoryanditschannelcapacity-2Discretechannelwithoutmemoryanditschannelcapacity
Accordingtothecharacteristicofthemutualinfo.ofthemessagesequence,tothediscretechannelwithoutmemory:(Nature4)So:
Onlywhenthesourcewithoutmemory,thepreviousformulais“equivalence”(Cor.ofNature3、4)
§4.3:Discretechannelwithoutmemoryanditschannelcapacity-3FurtherunderstandingExistenceofCmaxMutualinfo.nature1,thelimitvalueoftheconvexfunctionexisted.TwoconditionstoreachCmax:ThesourceisdiscreteandwithoutmemoryTheprobabilitydistributionofthechannelinputisthedistributiontomakeI(X,Y)maximum.ThevalueofCisnotdeterminedbytheP(x)ofthesource,butdeterminedbyP.Cistheperformancemeasurementofthechannelwhichisthepassageofinfo.transmission.OnlywhenthesourceX(x1x2…xn)satisfiedcertainconditions,itcanfullyusetheabilityoftheinfo.transmission.§4.3:Discretechannelwithoutmemoryanditschannelcapacity-4ComputationofthechannelcapacityofthediscretechannelwithoutmemoryMentality:Thequestioncanbetransformedto:togettherestraintextremevalueonaclosedregionMethod:1st,togettheextremevalueintheregion2nd,togetextremevalueoftheboundary3rd,togetthemaximumvaluesofprevioustwoConcreterealization:1、solvesinthesimplesituation(forexamplesinglemarkchannel,symmetricalchannel)2、soluteequation3、iterate4、others§4.3:Discretechannelwithoutmemoryanditschannelcapacity-5Channelcapacitytheoremofdiscretechannelwithoutmemory
Theorem5.1:Tothediscretechannelwithoutmemorywhosepre-transitionprobabilitymatrixisQ,theabundantandnecessaryconditionthatitsinputletterprobabilitydistributionp*cancausethemutualinfo.I(p,Q)takethemaximumvalueis:
Note:
istheaveragemutualinfo.whichisthesourceletteraktransmits,Cisthechannelcapacityofthischannel.
§4.3:Discretechannelwithoutmemoryanditschannelcapacity-6UnderstandingofthetheoremUnderthiskindofdistribution,eachletterwhoseprobability>0providesmutualinformation=C,eachletterwhoseprobability=0providesmutuallyinformation≤COnlywhenunderthiskindofdistribution,maycauseI(p,Q)obtainthemaximumvalueCI(X,Y)istheaverageofI(x=ak;Y).Namely:WantstoenhanceI(X,Y),mayenhancep(ak)Butifenhancep(ak),mayreduceI(x=ak;Y)Adjustrepeatedlyp(ak),makeI(x=ak;Y)allequaltoCThistime:I(X,Y)=CThetheoremonlyprovidestheabundantandnecessaryconditionofp(x)tomakeI(X,Y)=C.ItdoesnothavetheconcretedistributionandtheCvalue,butmayhelptogettheCvalueofpartialchannelsinsimplesituation§4.3:Discretechannelwithoutmemoryanditschannelcapacity-7ChannelcapacityofthesymmetricaldiscretechannelwithoutmemorysymmetricaldiscretechannelwithoutmemoryTheoutputlettersetmaybedividedintocertainsubsets,toeachsubset:Inthematrix,eachlineistherearrangementofthefirstline;
Inthematrix,eachrowistherearrangementofthefirstrow.Theorem5.2:Asforthesymmetricaldiscretechannelwithoutmemory,whenthechannelinputlettersatisfiedequalprobabilitydistribution,itwillachievethechannelcapacity.§4.3:Discretechannelwithoutmemoryanditschannelcapacity-8Symmetricalchannel§4.3:Discretechannelwithoutmemoryanditschannelcapacity-9a1a2b1b2b30。70。10。10。20。7a1a2b1b2b30。20。70。70。10。10。2§4.3:Discretechannelwithoutmemoryanditschannelcapacity-10ComputationoftheBSCchannelcapacitya1a2b1b21-ε1-εεε§4.3:Discretechannelwithoutmemoryanditschannelcapacity-11AccordingtoTheorem5.2,whentheinputsatisfiedequalprobabilitydistribution,themutualinfo.willachievethechannelcapacitynamely:whenp(a1)=p(a2)=1/2;
so:
note:ApplicationExample3.2(18)、3.6(23)§4.3:Discretechannelwithoutmemoryanditschannelcapacity-12computationofthechannelcapacityofdualdeletionchannel
a1a2b1b21-ε1-εεεb3§4.3:Discretechannelwithoutmemoryanditschannelcapacity-13AccordingtoTheorem5.2,whentheinputsatisfiedequalprobabilitydistribution,themutualinfo.willachievethechannelcapacitynamely:whenp(a1)=p(a2)=1/2;
so:
§4.3:Discretechannelwithoutmemoryanditschannelcapacity-140.51.000.51.0cεbaCa=Cb=a:BSC信道的信道容量曲線b:二進(jìn)制刪除信道的信道容量曲線
TogetthechannelcapacityofsymmetricaldiscretematrixP:1/21/31/6P=1/61/21/31/31/61/2
C=logs-H(p1,p2,p3)=log3-H(1/2,1/3,1/6)=log3+1/2log1/2+1/3log1/3+1/6log1/6=1.126bit/sTheresultindicatedthat,Onlywhentheinputsatisfiedequalprobabilitydistribution,thechannelcapacityachievesmaximumvalue.Theaveragegreatestinfo.contentofeachmarktransmissionis1.126bit.1losslesschannel一個(gè)輸入對(duì)多個(gè)互不相交的輸出,因?yàn)閾p失熵H(X/Y)=0故I(X,Y)=H(X)C=logrr為輸入個(gè)數(shù)2definitechannel一個(gè)輸出對(duì)多個(gè)互不相交的輸入,因?yàn)樵肼曥豀(Y/X)=0故I(X,Y)=H(Y)C=logss為輸出個(gè)數(shù)3losslessdefinitechannel一個(gè)輸入對(duì)一個(gè)輸出,因?yàn)閾p失熵H(X/Y)=0噪聲熵H(Y/X)=0故I(X,Y)=H(X)=H(Y)C=logrr為輸入個(gè)數(shù)Discretenoiselesschannel§4.3:Discretechannelwithoutmemoryanditschannelcapacity-15physicssignificanceoftheShannonfirsttheorem:(lengthuncertainlosslesssourcecoding)
(equalsignalestablisheswhenachievedlimit)
astothechannel,thechannelinformationtransmissibility:
(equalsignalestablisheswhenachievedlimit)§4.3:Discretechannelwithoutmemoryanditschannelcapacity-16physicssignificanceoftheShannonfirsttheorem:(lengthuncertainlosslesssourcecoding)Channelcapacityofnoiselessandlosslesschannel:C=logMNowwhentheaveragecodelengthhasextremevalue:ChannelinformationtransmissibilityR=channelcapacityCofthenoiselesschanneltheessenceoflosslesssourcecoding:對(duì)離散信源進(jìn)行適當(dāng)變換,使變換后新的碼符號(hào)信源(信道的輸入信源)盡可能為等概分布,以使新信源的每個(gè)碼符號(hào)平均所含的信息量達(dá)到最大,從而使信道的信息傳輸率R達(dá)到信道容量C,實(shí)現(xiàn)信源與信道理想的統(tǒng)計(jì)匹配。Alsocalled:noiselesschannelcodingtheorem若信道的信息傳輸率R不大于信道容量C,總能對(duì)信源的輸出進(jìn)行適當(dāng)?shù)木幋a,使得在無噪無損信道上能無差錯(cuò)地以最大信息傳輸率C傳輸信息;但要使信道的信息傳輸率R大于C而無差錯(cuò)地傳輸信息則是不可能的?!?.5:信道容量InformationsourceEncoderSXDiscreteCommunicationChannelX={x1,x2,…,xr}DecoderXSInformationreceiverContinuouschannel--analogchannelContinuouschannel:Char1:thetimeisdiscrete、thescopeiscontinuousChar2:ateachmoment,itisthesinglerandomvariablewhosevalueiscontinuous(vsdiscretesequence)Researchmethod:randomvariableofNfreedomdegree,takestoresearchConaverageeachfreedomdegreeanalogchannel:Char1:thetimeiscontinuous、thescopeiscontinuousChar2:Agroupoftimesamplefunctions,ateachmoment,thetimeandthescopevalueofthesamplefunctionareallcontinualResearchmethod:1、discretewhenthefrequencyandthetimearelimited,canbequantifiedtothediscreterandomvector2、toavoidthedifficultyofresearchingtherandomvectorhavingmemory,findagroupofcompletelyorthogonalfunctionsets,launchesfortheprogression,enabletomaketherandomvectorcomposedbythecoefficientbeindependentorbelinearindependent.Note:1、timelimit--frequencyspectruminfinite,frequencylimit--timeinfinite.2、assumethatthefunctionvalueisverysmalloutsideForT,andthatthetimeandthefrequencyislimitedwillnotcauseseriousdistortionAnalogsourceAnalogcommunicationsystemSourcecodingChannelcodingAnalogchannelChanneldecodingSourcedecodingDestinationA/DconverterModulationDemodulationD/Aconverter01101…01110010…01111010…01101…§5.4:Continuouschannelanditscapacity-1-ReviewEntropyofcontinuousrandomvariable-differentialentropy(VSdiscreterandomvariable)Thecontinuousrandomvariablebiggestentropydistribution--reliesontheconstraintcondition(VSdiscreterandomvariable)Thepeakpowerislimited--theuniformdistributionrandomvariablewillhavethebiggestdifferentialentropyTheaveragepowerislimited--theGaussdistributionrandomvariablewillhavethebiggestdifferentialentropyThevalueterritoryofthecontinualchannelinputisinsufficienttoexpressthelimittothechannelalsotheconstraintconditionC=max[h(Y)-h(n)]C取決于信道的統(tǒng)計(jì)特性(加性信道即噪聲的統(tǒng)計(jì)特性)輸入隨機(jī)矢量X所受的限制條件(一般考慮平均功率受限時(shí))Unit:bit/N個(gè)自由度Channelcapacityofthecontinualchannel--capacityexpensefunctiondescription§5.4:Continuouschannelanditscapacity-2C.FWu&Zhu&Fu--channelcapacityWu:Channelcapacity:discrete、continuousCapacitycostfunction:discretechannel、continuouschannelZhu:Channelcapacity:discreteCapacitycostfunction:continuouschannel&continuouschannelFu:Channelcapacity:discrete、continuous§5.4:Continuouschannelanditscapacity-3Methodstoresearchcontinuouschannelcapacitybasic、simplechannel:addablenoisechannelwithoutmemoryWhenthechannelnoiseisGaussWhichdistributioninputwilltakefullyadvantageofthechannelWhenthechannelinputisGaussWhichdistributionnoisewillaffectthechannelinfo.transmissionmost§5.4:Continuouschannelanditscapacity-4Basicknowledge:toaddablechannelY=X+NX:channelinputN:channelnoiseY:channeloutputThechanneltransitionprobabilitydistributionfunctionistheNdistributionfunctionb(x)isthecorrespondexpensewhenthechannelinputisxIftwoofX,Y,NistheGaussdistribution,thenthenotheralsoistheGaussdistributionDifferentialentropyoftherandomvariablesatisfiesGaussdistributionh(XG)=Thevalueofdifferentialentropyh(XG)onlyconcernswiththevariance ,hasnothingtodowiththeaveragevalueAddablechannelErrorSource+EXOutputInput§5.5:AnalogchannelanditscapacityChannelcapacityexpensefunctionoftheanalogchannelanditscomputation:Generalizedsteadylimitedfrequency(F),limitedtime(T),limitedpower(P)whiteGausschannelanditscapacityCShannon
formula
PhysicalsignificanceofShannon
formulaUsageofShannon
formula§5.5:Analogchannelanditscapacity-4Generalizedsteadylimitedfrequency(F),limitedtime(T),limitedpower(P)whiteGausschannelanditscapacityC
Tothecontinuousprocesssourcewhichhaslimitedfrequency(F),limitedtime(T)maybeunfoldedthefollowingsamplingfunctionsequence:Nowletthese2FTsamplesvaluesequencepassthroughthewhiteGausschannelwhichhaspowerlimited(P)andgetitscapacityC.
§5.5:Analogchannelanditscapacity-Shannon
formula1ShannonformulaTheorem5.3:WhenageneralsteadyrandomprocessX(t,w)sourcewhichsatisfieslimitedfrequency(F)andtime(T)passesthroughawhiteGausschannelwhichhaslimitedpower(P),itscapacityis:ThisisthefamousShannonformula.WhenT=1,thecapacityis:§5.5:Analogchannelanditscapacity-Shannonformula2prove:wehadgotthecapacityofthesinglecontinuousmessage(NO.k)whenpassingthroughtheGausschannel:Meanwhile,wehadprovedthatwhenthesourceandthechannelhasnomemoryinthemutualinfo.,thefollowingformulawillbetenable:Accordingtothedef.ofthechannelcapacity:§5.5:Analogchannelanditscapacity-Shannon
formula3PhysicalsignificanceoftheShannonformulaItpresentsthedialecticalrelationsamongthethreesignalphysicsparameterswhichdeterminedthechannelcapacityC:F、T、。Productofthethreeisa“moldable"volume(threedimensional).Thethreemayexchange.§5.5:Analogchannelanditscapacity-Shannonformula4-usageofShannonformula:1
Usethefrequencyband
inexchangeforthesignalnoiseratio:Widenfrequencycorrespondenceprinciple.Intheradarsignaldesign,thereislinearlyfrequencymodulatedpulse.Intheanalogcommunications,thefrequencymodulationsurpassestheamplitudemodulation,andthewiderthefrequencybandis,thestrongertheanti-disturbanceis.Inthedigitalcommunication,thepseudo-code(PN)straightlyexpandswiththetimefrequencycode.Thewiderthebandwidthis,themorethewidenfrequencyincreases,andthestrongertheanti-disturbanceis.Inthedeepspacecorrespondence(powerenergyislimited,frequencyspectrumresourcesisrelativelyrich),weusetwolevelsdigitalcommunicationwaytoeffectivelyusethechannelcapacity.
Attention:thereislimit歸一化信道容量關(guān)于帶寬W的關(guān)系圖歸一化信道帶寬關(guān)于信噪比SNR的關(guān)系圖
-anotherformofShannonformula:
其中,為噪聲密度,即單位帶寬的噪聲強(qiáng)度,σ2=N0F;
Eb
表示單位符號(hào)信號(hào)的能量,Eb=STb=S/F;Eb/N0
稱為歸一化信噪比.也稱為能量信噪比.WhenEb/N0<<1,
≈Eb/N0
(nat)=(bit)Conclusion:whenthesignalnoiseratioislow,thechannelcapacityisapproximatelydeterminedbythepowersignalnoiseratio.§5.5:Analogchannelanditscapacity-Shannonformula
5-usageofShannonformula:2usethesignalnoiseratioinexchangeforthefrequencybrandbasicprincipleofmultiplesystem,multi-levels,multi-dimensionalconstellationmodulationwayThatbeusedInthesatellite,thedigitalmicrowaveoftenincluding:
themulti-levelsmodulation,theheterogeneitymodulation,thehighdimensionalconstellationmodulation(M-QAM)andsoon.Itusethewealthysignalnoiseratiointhehighqualitychanneltoexchangeforthefrequencyband,thustoenhancethetransmissionvalidity.
§5.5:Analogchannelanditscapacity-Shannonformula6usageofShannonformula:3usethetimetoexchangeforsignalnoiseratio重傳、弱信號(hào)累積接收基于這一原理。t=T0istheboundary.信號(hào)功率S有規(guī)律隨時(shí)間線性增長,噪聲功率σ2無規(guī)律,隨時(shí)間呈均方根增長?!?.5:Analogchannelanditscapacity-Shannonformula7usageofShannonformula:4
usethetimetoexchangeforthefrequencybandorusethefrequencybandtoexchangeforthetime:
Thewidenfrequency--reducesthetime:electroniccountermeasureofcorrespondence,submarinecorrespondenceThenarrowband--increasesthetime:Thetelephonechannelpassesontheaccuratemovingpicture§5.5:Analogchannelanditscapacity-Shannonformula
8Thegoaltodiscusschannelcapacityandthechannelexpensefunction:Nottorealizethereliabletransmission(whichisthegoalofthechannelcoding)OnlytorealizethemosttransmissionabilityofthechannelMaypresenttheboundaryofthechannelcodingAbouttheShannon
formulathechannelisaddablewhiteGaussnoise(AWGN)PresenttherelationshipoftheS、N、Wandthechannelcapacity(thebiggesttransmitspeed)NotpresenttherelationshipofS、N、Wandthedifferenceprobability-1.59dB例2、在圖片傳輸中,每幀約為2.25×106個(gè)像素,為了能很好地重現(xiàn)圖像,需分16個(gè)亮度電平,并假設(shè)亮度電平等概率分布。試計(jì)算每秒鐘傳送30幀圖片所需信道的帶寬(信噪功率比為30dB)。信噪比(S/N)通常用分貝(dB)表示,分貝數(shù)=10×log10(S/N)
解:高斯白噪聲加性信道單位時(shí)間的信道容量:(比特/秒)
要求的信息傳輸率為:Ct=2.25×106×log16×30=2.7×108(bit/s)=Wlog(1+S/N)而:10lg(S/N)=30dBS/N=103W=(2.7×108)/log(1+103)≈2.7×107(HZ)
貓速度和寬帶的解釋舉例3.8(26)曹志剛《現(xiàn)代通信原理》關(guān)于香農(nóng)公式的一些結(jié)論Channelcapacity:Thegreatestinformationcontentthatcanbetransmittedin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程公司文案管理制度
- 公司內(nèi)控體系管理制度
- 小店會(huì)員充值管理制度
- 公文制發(fā)保密管理制度
- 廢舊資產(chǎn)處置方案(3篇)
- 農(nóng)業(yè)企業(yè)資金管理制度
- 機(jī)電材料檢查方案(3篇)
- 業(yè)務(wù)支出預(yù)算方案(3篇)
- 離職風(fēng)險(xiǎn)處理方案(3篇)
- 崗位主要安全管理制度
- 在線網(wǎng)課知慧《水產(chǎn)動(dòng)物育種學(xué)(海南大學(xué))》單元測(cè)試考核答案
- 洗煤廠取水工程或設(shè)施核驗(yàn)報(bào)告模板
- 體弱兒及肥胖兒護(hù)理
- 社保補(bǔ)償協(xié)議書社保繳費(fèi)義務(wù)履行
- 農(nóng)行合規(guī)演講稿
- 《一輪復(fù)習(xí)動(dòng)員》主題班會(huì)課件1
- 會(huì)計(jì)學(xué)專業(yè)導(dǎo)論
- ZJ17ZB45卷接包設(shè)備點(diǎn)巡檢作業(yè)規(guī)程
- 降低壓力性損傷發(fā)生率品管圈課件
- 《嘭嘭嘭》閱讀測(cè)試題(附答案)
- 《生活環(huán)境和健康》課件
評(píng)論
0/150
提交評(píng)論