2022屆撫州市重點中學高三第二次診斷性檢測數學試卷含解析_第1頁
2022屆撫州市重點中學高三第二次診斷性檢測數學試卷含解析_第2頁
2022屆撫州市重點中學高三第二次診斷性檢測數學試卷含解析_第3頁
2022屆撫州市重點中學高三第二次診斷性檢測數學試卷含解析_第4頁
2022屆撫州市重點中學高三第二次診斷性檢測數學試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓內有一條以點為中點的弦,則直線的方程為()A. B.C. D.2.已知拋物線上一點的縱坐標為4,則點到拋物線焦點的距離為()A.2 B.3 C.4 D.53.已知公差不為0的等差數列的前項的和為,,且成等比數列,則()A.56 B.72 C.88 D.404.已知焦點為的拋物線的準線與軸交于點,點在拋物線上,則當取得最大值時,直線的方程為()A.或 B.或 C.或 D.5.集合的子集的個數是()A.2 B.3 C.4 D.86.高三珠海一模中,經抽樣分析,全市理科數學成績X近似服從正態(tài)分布,且.從中隨機抽取參加此次考試的學生500名,估計理科數學成績不低于110分的學生人數約為()A.40 B.60 C.80 D.1007.已知函數,若,則等于()A.-3 B.-1 C.3 D.08.已知向量,,則向量與的夾角為()A. B. C. D.9.已知,橢圓的方程,雙曲線的方程為,和的離心率之積為,則的漸近線方程為()A. B. C. D.10.若復數滿足,則(其中為虛數單位)的最大值為()A.1 B.2 C.3 D.411.某歌手大賽進行電視直播,比賽現場有名特約嘉賓給每位參賽選手評分,場內外的觀眾可以通過網絡平臺給每位參賽選手評分.某選手參加比賽后,現場嘉賓的評分情況如下表,場內外共有數萬名觀眾參與了評分,組織方將觀眾評分按照,,分組,繪成頻率分布直方圖如下:嘉賓評分嘉賓評分的平均數為,場內外的觀眾評分的平均數為,所有嘉賓與場內外的觀眾評分的平均數為,則下列選項正確的是()A. B. C. D.12.若某幾何體的三視圖如圖所示,則該幾何體的表面積為()A.240 B.264 C.274 D.282二、填空題:本題共4小題,每小題5分,共20分。13.過圓的圓心且與直線垂直的直線方程為__________.14.已知是定義在上的偶函數,其導函數為.若時,,則不等式的解集是___________.15.在的展開式中,項的系數是__________(用數字作答).16.定義在R上的函數滿足:①對任意的,都有;②當時,,則函數的解析式可以是______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在極坐標系中,直線的極坐標方程為,以極點為原點,極軸為軸的正半軸建立平面直角坐標系,曲線的參數方程為(為參數),求直線與曲線的交點的直角坐標.18.(12分)如圖所示,在三棱柱中,為等邊三角形,,,平面,是線段上靠近的三等分點.(1)求證:;(2)求直線與平面所成角的正弦值.19.(12分)已知橢圓:的離心率為,左、右頂點分別為、,過左焦點的直線交橢圓于、兩點(異于、兩點),當直線垂直于軸時,四邊形的面積為1.(1)求橢圓的方程;(2)設直線、的交點為;試問的橫坐標是否為定值?若是,求出定值;若不是,請說明理由.20.(12分)在四棱錐中,底面是邊長為2的菱形,是的中點.(1)證明:平面;(2)設是直線上的動點,當點到平面距離最大時,求面與面所成二面角的正弦值.21.(12分)設數列是公差不為零的等差數列,其前項和為,,若,,成等比數列.(1)求及;(2)設,設數列的前項和,證明:.22.(10分)已知數列的各項均為正數,為其前n項和,對于任意的滿足關系式.(1)求數列的通項公式;(2)設數列的通項公式是,前n項和為,求證:對于任意的正數n,總有.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

設,,則,,相減得到,解得答案.【詳解】設,,設直線斜率為,則,,相減得到:,的中點為,即,故,直線的方程為:.故選:.【點睛】本題考查了橢圓內點差法求直線方程,意在考查學生的計算能力和應用能力.2.D【解析】試題分析:拋物線焦點在軸上,開口向上,所以焦點坐標為,準線方程為,因為點A的縱坐標為4,所以點A到拋物線準線的距離為,因為拋物線上的點到焦點的距離等于到準線的距離,所以點A與拋物線焦點的距離為5.考點:本小題主要考查應用拋物線定義和拋物線上點的性質拋物線上的點到焦點的距離,考查學生的運算求解能力.點評:拋物線上的點到焦點的距離等于到準線的距離,這條性質在解題時經常用到,可以簡化運算.3.B【解析】

,將代入,求得公差d,再利用等差數列的前n項和公式計算即可.【詳解】由已知,,,故,解得或(舍),故,.故選:B.【點睛】本題考查等差數列的前n項和公式,考查等差數列基本量的計算,是一道容易題.4.A【解析】

過作與準線垂直,垂足為,利用拋物線的定義可得,要使最大,則應最大,此時與拋物線相切,再用判別式或導數計算即可.【詳解】過作與準線垂直,垂足為,,則當取得最大值時,最大,此時與拋物線相切,易知此時直線的斜率存在,設切線方程為,則.則,則直線的方程為.故選:A.【點睛】本題考查直線與拋物線的位置關系,涉及到拋物線的定義,考查學生轉化與化歸的思想,是一道中檔題.5.D【解析】

先確定集合中元素的個數,再得子集個數.【詳解】由題意,有三個元素,其子集有8個.故選:D.【點睛】本題考查子集的個數問題,含有個元素的集合其子集有個,其中真子集有個.6.D【解析】

由正態(tài)分布的性質,根據題意,得到,求出概率,再由題中數據,即可求出結果.【詳解】由題意,成績X近似服從正態(tài)分布,則正態(tài)分布曲線的對稱軸為,根據正態(tài)分布曲線的對稱性,求得,所以該市某校有500人中,估計該校數學成績不低于110分的人數為人,故選:.【點睛】本題考查正態(tài)分布的圖象和性質,考查學生分析問題的能力,難度容易.7.D【解析】分析:因為題設中給出了的值,要求的值,故應考慮兩者之間滿足的關系.詳解:由題設有,故有,所以,從而,故選D.點睛:本題考查函數的表示方法,解題時注意根據問題的條件和求解的結論之間的關系去尋找函數的解析式要滿足的關系.8.C【解析】

求出,進而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點睛】本題考查了向量的坐標運算,考查了數量積的坐標表示.求向量夾角時,通常代入公式進行計算.9.A【解析】

根據橢圓與雙曲線離心率的表示形式,結合和的離心率之積為,即可得的關系,進而得雙曲線的離心率方程.【詳解】橢圓的方程,雙曲線的方程為,則橢圓離心率,雙曲線的離心率,由和的離心率之積為,即,解得,所以漸近線方程為,化簡可得,故選:A.【點睛】本題考查了橢圓與雙曲線簡單幾何性質應用,橢圓與雙曲線離心率表示形式,雙曲線漸近線方程求法,屬于基礎題.10.B【解析】

根據復數的幾何意義可知復數對應的點在以原點為圓心,1為半徑的圓上,再根據復數的幾何意義即可確定,即可得的最大值.【詳解】由知,復數對應的點在以原點為圓心,1為半徑的圓上,表示復數對應的點與點間的距離,又復數對應的點所在圓的圓心到的距離為1,所以.故選:B【點睛】本題考查了復數模的定義及其幾何意義應用,屬于基礎題.11.C【解析】

計算出、,進而可得出結論.【詳解】由表格中的數據可知,,由頻率分布直方圖可知,,則,由于場外有數萬名觀眾,所以,.故選:B.【點睛】本題考查平均數的大小比較,涉及平均數公式以及頻率分布直方圖中平均數的計算,考查計算能力,屬于基礎題.12.B【解析】

將三視圖還原成幾何體,然后分別求出各個面的面積,得到答案.【詳解】由三視圖可得,該幾何體的直觀圖如圖所示,延長交于點,其中,,,所以表面積.故選B項.【點睛】本題考查三視圖還原幾何體,求組合體的表面積,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據與已知直線垂直關系,設出所求直線方程,將已知圓圓心坐標代入,即可求解.【詳解】圓心為,所求直線與直線垂直,設為,圓心代入,可得,所以所求的直線方程為.故答案為:.【點睛】本題考查圓的方程、直線方程求法,注意直線垂直關系的靈活應用,屬于基礎題.14.【解析】

構造,先利用定義判斷的奇偶性,再利用導數判斷其單調性,轉化為,結合奇偶性,單調性求解不等式即可.【詳解】令,則是上的偶函數,,則在上遞減,于是在上遞增.由得,即,于是,則,解得.故答案為:【點睛】本題考查了利用函數的奇偶性、單調性解不等式,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于較難題.15.【解析】的展開式的通項為:.令,得.答案為:-40.點睛:求二項展開式有關問題的常見類型及解題策略(1)求展開式中的特定項.可依據條件寫出第r+1項,再由特定項的特點求出r值即可.(2)已知展開式的某項,求特定項的系數.可由某項得出參數項,再由通項寫出第r+1項,由特定項得出r值,最后求出其參數.16.(或,答案不唯一)【解析】

由可得是奇函數,再由時,可得到滿足條件的奇函數非常多,屬于開放性試題.【詳解】在中,令,得;令,則,故是奇函數,由時,,知或等,答案不唯一.故答案為:(或,答案不唯一).【點睛】本題考查抽象函數的性質,涉及到由表達式確定函數奇偶性,是一道開放性的題,難度不大.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.【解析】

將直線的極坐標方程和曲線的參數方程分別化為直角坐標方程,聯(lián)立直角坐標方程求出交點坐標,結合的取值范圍進行取舍即可.【詳解】因為直線的極坐標方程為,所以直線的普通方程為,又因為曲線的參數方程為(為參數),所以曲線的直角坐標方程為,聯(lián)立方程,解得或,因為,所以舍去,故點的直角坐標為.【點睛】本題考查極坐標方程、參數方程與直角坐標方程的互化;考查運算求解能力;熟練掌握極坐標方程、參數方程與直角坐標方程的互化公式是求解本題的關鍵;屬于中檔題、常考題型.18.(1)證明見解析(2)【解析】

(1)由,故,所以四邊形為菱形,再通過,證得,所以四邊形為正方形,得到.(2)根據(1)的論證,建立空間直角坐標,設平面的法向量為,由求得,再由,利用線面角的向量法公式求解.【詳解】(1)因為,故,所以四邊形為菱形,而平面,故.因為,故,故,即四邊形為正方形,故.(2)依題意,.在正方形中,,故以為原點,所在直線分別為、、軸,建立如圖所示的空間直角坐標系;如圖所示:不紡設,則,又因為,所以.所以.設平面的法向量為,則,即,令,則.于是.又因為,設直線與平面所成角為,則,所以直線與平面所成角的正弦值為.【點睛】本題考查空間線面的位置關系、線面成角,還考查空間想象能力以及數形結合思想,屬于中檔題.19.(1)(2)是為定值,的橫坐標為定值【解析】

(1)根據“直線垂直于軸時,四邊形的面積為1”列方程,由此求得,結合橢圓離心率以及,求得,由此求得橢圓方程.(2)設出直線的方程,聯(lián)立直線的方程和橢圓方程,化簡后寫出根與系數關系.求得直線的方程,并求得兩直線交點的橫坐標,結合根與系數關系進行化簡,求得的橫坐標為定值.【詳解】(1)依題意可知,解得,即;而,即,結合解得,,因此橢圓方程為(2)由題意得,左焦點,設直線的方程為:,,.由消去并整理得,∴,.直線的方程為:,直線的方程為:.聯(lián)系方程,解得,又因為.所以.所以的橫坐標為定值.【點睛】本小題主要考查根據橢圓離心率求橢圓方程,考查直線和橢圓的位置關系,考查直線和直線交點坐標的求法,考查運算求解能力,屬于中檔題.20.(1)證明見解析(2)【解析】

(1)取中點,連接,根據菱形的性質,結合線面垂直的判定定理和性質進行證明即可;(2)根據面面垂直的判定定理和性質定理,可以確定點到直線的距離即為點到平面的距離,結合垂線段的性質可以確定點到平面的距離最大,最大值為1.以為坐標原點,直線分別為軸建立空間直角坐標系.利用空間向量夾角公式,結合同角的三角函數關系式進行求解即可.【詳解】(1)證明:取中點,連接,因為四邊形為菱形且.所以,因為,所以,又,所以平面,因為平面,所以.同理可證,因為,所以平面.(2)解:由(1)得平面,所以平面平面,平面平面.所以點到直線的距離即為點到平面的距離.過作的垂線段,在所有的垂線段中長度最大的為,此時必過的中點,因為為中點,所以此時,點到平面的距離最大,最大值為1.以為坐標原點,直線分別為軸建立空間直角坐標系.則所以平面的一個法向量為,設平面的法向量為,則即取,則,,所以,所以面與面所成二面角的正弦值為.【點睛】本題考查了線面垂直的判定定理和性質的應用,考查了二面角的向量求法,考查了推理論證能力和數學運算能力.21.(1),;(2)證明見解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論