版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列的前項和為,且,,,則的通項公式()A. B. C. D.2.新聞出版業(yè)不斷推進(jìn)供給側(cè)結(jié)構(gòu)性改革,深入推動優(yōu)化升級和融合發(fā)展,持續(xù)提高優(yōu)質(zhì)出口產(chǎn)品供給,實現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收增長情況,則下列說法錯誤的是()A.2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收均逐年增加B.2016年我國數(shù)字出版業(yè)營收超過2012年我國數(shù)字出版業(yè)營收的2倍C.2016年我國新聞出版業(yè)營收超過2012年我國新聞出版業(yè)營收的1.5倍D.2016年我國數(shù)字出版營收占新聞出版營收的比例未超過三分之一3.過圓外一點引圓的兩條切線,則經(jīng)過兩切點的直線方程是().A. B. C. D.4.已知雙曲線的右焦點為為坐標(biāo)原點,以為直徑的圓與雙曲線的一條漸近線交于點及點,則雙曲線的方程為()A. B. C. D.5.已知命題p:若,,則;命題q:,使得”,則以下命題為真命題的是()A. B. C. D.6.已知定義在上的奇函數(shù)滿足,且當(dāng)時,,則()A.1 B.-1 C.2 D.-27.生活中人們常用“通五經(jīng)貫六藝”形容一個人才識技藝過人,這里的“六藝”其實源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.為弘揚中國傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開安排的概率為()A. B. C. D.8.設(shè)x、y、z是空間中不同的直線或平面,對下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②9.已知復(fù)數(shù),則的虛部為()A. B. C. D.110.若,則下列不等式不能成立的是()A. B. C. D.11.復(fù)數(shù)的虛部為()A. B. C.2 D.12.一場考試需要2小時,在這場考試中鐘表的時針轉(zhuǎn)過的弧度數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系xOy中,直角三角形ABC的三個頂點都在橢圓上,其中A(0,1)為直角頂點.若該三角形的面積的最大值為,則實數(shù)a的值為_____.14.(5分)已知函數(shù),則不等式的解集為____________.15.設(shè)為拋物線的焦點,為上互相不重合的三點,且、、成等差數(shù)列,若線段的垂直平分線與軸交于,則的坐標(biāo)為_______.16.已知函數(shù),若,則實數(shù)的取值范圍為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在中,已知,,,為線段的中點,是由繞直線旋轉(zhuǎn)而成,記二面角的大小為.(1)當(dāng)平面平面時,求的值;(2)當(dāng)時,求二面角的余弦值.18.(12分)已知函數(shù).(1)求函數(shù)的零點;(2)設(shè)函數(shù)的圖象與函數(shù)的圖象交于,兩點,求證:;(3)若,且不等式對一切正實數(shù)x恒成立,求k的取值范圍.19.(12分)已知函數(shù)的定義域為.(1)求實數(shù)的取值范圍;(2)設(shè)實數(shù)為的最小值,若實數(shù),,滿足,求的最小值.20.(12分)設(shè)函數(shù),,(Ⅰ)求曲線在點(1,0)處的切線方程;(Ⅱ)求函數(shù)在區(qū)間上的取值范圍.21.(12分)已知函數(shù)(Ⅰ)若,求曲線在點處的切線方程;(Ⅱ)若在上恒成立,求實數(shù)的取值范圍;(Ⅲ)若數(shù)列的前項和,,求證:數(shù)列的前項和.22.(10分)若數(shù)列前n項和為,且滿足(t為常數(shù),且)(1)求數(shù)列的通項公式:(2)設(shè),且數(shù)列為等比數(shù)列,令,.求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
利用證得數(shù)列為常數(shù)列,并由此求得的通項公式.【詳解】由,得,可得().相減得,則(),又由,,得,所以,所以為常數(shù)列,所以,故.故選:C【點睛】本小題考查數(shù)列的通項與前項和的關(guān)系等基礎(chǔ)知識;考查運算求解能力,邏輯推理能力,應(yīng)用意識.2、C【解析】
通過圖表所給數(shù)據(jù),逐個選項驗證.【詳解】根據(jù)圖示數(shù)據(jù)可知選項A正確;對于選項B:,正確;對于選項C:,故C不正確;對于選項D:,正確.選C.【點睛】本題主要考查柱狀圖是識別和數(shù)據(jù)分析,題目較為簡單.3、A【解析】過圓外一點,引圓的兩條切線,則經(jīng)過兩切點的直線方程為,故選.4、C【解析】
根據(jù)雙曲線方程求出漸近線方程:,再將點代入可得,連接,根據(jù)圓的性質(zhì)可得,從而可求出,再由即可求解.【詳解】由雙曲線,則漸近線方程:,,連接,則,解得,所以,解得.故雙曲線方程為.故選:C【點睛】本題考查了雙曲線的幾何性質(zhì),需掌握雙曲線的漸近線求法,屬于中檔題.5、B【解析】
先判斷命題的真假,進(jìn)而根據(jù)復(fù)合命題真假的真值表,即可得答案.【詳解】,,因為,,所以,所以,即命題p為真命題;畫出函數(shù)和圖象,知命題q為假命題,所以為真.故選:B.【點睛】本題考查真假命題的概念,以及真值表的應(yīng)用,解題的關(guān)鍵是判斷出命題的真假,難度較易.6、B【解析】
根據(jù)f(x)是R上的奇函數(shù),并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時,f(x)=2x-m及f(x)是奇函數(shù),即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【詳解】∵是定義在R上的奇函數(shù),且;∴;∴;∴的周期為4;∵時,;∴由奇函數(shù)性質(zhì)可得;∴;∴時,;∴.故選:B.【點睛】本題考查利用函數(shù)的奇偶性和周期性求值,此類問題一般根據(jù)條件先推導(dǎo)出周期,利用函數(shù)的周期變換來求解,考查理解能力和計算能力,屬于中等題.7、C【解析】
分情況討論,由間接法得到“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開的事件個數(shù),不考慮限制因素,總數(shù)有種,進(jìn)而得到結(jié)果.【詳解】當(dāng)“數(shù)”位于第一位時,禮和樂相鄰有4種情況,禮和樂順序有2種,其它剩下的有種情況,由間接法得到滿足條件的情況有當(dāng)“數(shù)”在第二位時,禮和樂相鄰有3種情況,禮和樂順序有2種,其它剩下的有種,由間接法得到滿足條件的情況有共有:種情況,不考慮限制因素,總數(shù)有種,故滿足條件的事件的概率為:故答案為:C.【點睛】解排列組合問題要遵循兩個原則:①按元素(或位置)的性質(zhì)進(jìn)行分類;②按事情發(fā)生的過程進(jìn)行分步.具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).8、C【解析】
①舉反例,如直線x、y、z位于正方體的三條共點棱時②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個共點側(cè)面時.【詳解】①當(dāng)直線x、y、z位于正方體的三條共點棱時,不正確;②因為垂直于同一平面的兩直線平行,正確;③因為垂直于同一直線的兩平面平行,正確;④如x、y、z位于正方體的三個共點側(cè)面時,不正確.故選:C.【點睛】此題考查立體幾何中線面關(guān)系,選擇題一般可通過特殊值法進(jìn)行排除,屬于簡單題目.9、C【解析】
先將,化簡轉(zhuǎn)化為,再得到下結(jié)論.【詳解】已知復(fù)數(shù),所以,所以的虛部為-1.故選:C【點睛】本題主要考查復(fù)數(shù)的概念及運算,還考查了運算求解的能力,屬于基礎(chǔ)題.10、B【解析】
根據(jù)不等式的性質(zhì)對選項逐一判斷即可.【詳解】選項A:由于,即,,所以,所以,所以成立;選項B:由于,即,所以,所以,所以不成立;選項C:由于,所以,所以,所以成立;選項D:由于,所以,所以,所以,所以成立.故選:B.【點睛】本題考查不等關(guān)系和不等式,屬于基礎(chǔ)題.11、D【解析】
根據(jù)復(fù)數(shù)的除法運算,化簡出,即可得出虛部.【詳解】解:=,故虛部為-2.故選:D.【點睛】本題考查復(fù)數(shù)的除法運算和復(fù)數(shù)的概念.12、B【解析】
因為時針經(jīng)過2小時相當(dāng)于轉(zhuǎn)了一圈的,且按順時針轉(zhuǎn)所形成的角為負(fù)角,綜合以上即可得到本題答案.【詳解】因為時針旋轉(zhuǎn)一周為12小時,轉(zhuǎn)過的角度為,按順時針轉(zhuǎn)所形成的角為負(fù)角,所以經(jīng)過2小時,時針?biāo)D(zhuǎn)過的弧度數(shù)為.故選:B【點睛】本題主要考查正負(fù)角的定義以及弧度制,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】
設(shè)直線AB的方程為y=kx+1,則直線AC的方程可設(shè)為yx+1,(k≠0),聯(lián)立方程得到B(,),故S,令t,得S,利用均值不等式得到答案.【詳解】設(shè)直線AB的方程為y=kx+1,則直線AC的方程可設(shè)為yx+1,(k≠0)由消去y,得(1+a2k2)x2+2a2kx=0,所以x=0或x∵A的坐標(biāo)(0,1),∴B的坐標(biāo)為(,k?1),即B(,),因此AB?,同理可得:AC?.∴Rt△ABC的面積為SAB?AC?令t,得S.∵t2,∴S△ABC.當(dāng)且僅當(dāng),即t時,△ABC的面積S有最大值為.解之得a=3或a.∵a時,t2不符合題意,∴a=3.故答案為:3.【點睛】本題考查了橢圓內(nèi)三角形面積的最值問題,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.14、【解析】
易知函數(shù)的定義域為,且,則是上的偶函數(shù).由于在上單調(diào)遞增,而在上也單調(diào)遞增,由復(fù)合函數(shù)的單調(diào)性知在上單調(diào)遞增,又在上單調(diào)遞增,故知在上單調(diào)遞增.令,知,則不等式可化為,即,可得,又,是偶函數(shù),可得,由在上單調(diào)遞增,可得,則,解得,故不等式的解集為.15、或【解析】
設(shè)出三點的坐標(biāo),結(jié)合等差數(shù)列的性質(zhì)、線段垂直平分線的性質(zhì)、拋物線的定義進(jìn)行求解即可.【詳解】拋物線的準(zhǔn)線方程為:,設(shè),由拋物線的定義可知:,,,因為、、成等差數(shù)列,所以有,所以,因為線段的垂直平分線與軸交于,所以,因此有,化簡整理得:或.若,由可知;,這與已知矛盾,故舍去;若,所以有,因此.故答案為:或【點睛】本題考查了拋物線的定義的應(yīng)用,考查了等差數(shù)列的性質(zhì),考查了數(shù)學(xué)運算能力.16、【解析】
畫圖分析可得函數(shù)是偶函數(shù),且在上單調(diào)遞減,利用偶函數(shù)性質(zhì)和單調(diào)性可解.【詳解】作出函數(shù)的圖如下所示,觀察可知,函數(shù)為偶函數(shù),且在上單調(diào)遞增,在上單調(diào)遞減,故,故實數(shù)的取值范圍為.故答案為:【點睛】本題考查利用函數(shù)奇偶性及單調(diào)性解不等式.函數(shù)奇偶性的常用結(jié)論:(1)如果函數(shù)是偶函數(shù),那么.(2)奇函數(shù)在兩個對稱的區(qū)間上具有相同的單調(diào)性;偶函數(shù)在兩個對稱的區(qū)間上具有相反的單調(diào)性.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)平面平面,建立坐標(biāo)系,根據(jù)法向量互相垂直求得;(2)求兩個平面的法向量的夾角.【詳解】(1)如圖,以為原點,在平面內(nèi)垂直于的直線為軸所在的直線分別為軸,軸,建立空間直角坐標(biāo)系,則,設(shè)為平面的一個法向量,由得,取,則因為平面的一個法向量為由平面平面,得所以即.(2)設(shè)二面角的大小為,當(dāng)平面的一個法向量為,綜上,二面角的余弦值為.【點睛】本題考查用空間向量求平面間的夾角,平面與平面垂直的判定,二面角的平面角及求法,難度一般.18、(1)x=1(2)證明見解析(3)【解析】
(1)令,根據(jù)導(dǎo)函數(shù)確定函數(shù)的單調(diào)區(qū)間,求出極小值,進(jìn)而求解;(2)轉(zhuǎn)化思想,要證,即證,即證,構(gòu)造函數(shù)進(jìn)而求證;(3)不等式對一切正實數(shù)恒成立,,設(shè),分類討論進(jìn)而求解.【詳解】解:(1)令,所以,當(dāng)時,,在上單調(diào)遞增;當(dāng)時,,在單調(diào)遞減;所以,所以的零點為.(2)由題意,,要證,即證,即證,令,則,由(1)知,當(dāng)且僅當(dāng)時等號成立,所以,即,所以原不等式成立.(3)不等式對一切正實數(shù)恒成立,,設(shè),,記,△,①當(dāng)△時,即時,恒成立,故單調(diào)遞增.于是當(dāng)時,,又,故,當(dāng)時,,又,故,又當(dāng)時,,因此,當(dāng)時,,②當(dāng)△,即時,設(shè)的兩個不等實根分別為,,又,于是,故當(dāng)時,,從而在單調(diào)遞減;當(dāng)時,,此時,于是,即舍去,綜上,的取值范圍是.【點睛】(1)考查函數(shù)求導(dǎo),根據(jù)導(dǎo)函數(shù)確定函數(shù)的單調(diào)性,零點;(2)考查轉(zhuǎn)化思想,構(gòu)造函數(shù)求極值;(3)考查分類討論思想,函數(shù)的單調(diào)性,函數(shù)的求導(dǎo);屬于難題.19、(1);(2)【解析】
(1)首先通過對絕對值內(nèi)式子符號的討論,將不等式轉(zhuǎn)化為一元一次不等式組,再分別解各不等式組,最后求各不等式組解集的并集,得到所求不等式的解集;(2)首先確定m的值,然后利用柯西不等式即可證得題中的不等式.【詳解】(1)因為函數(shù)定義域為,即恒成立,所以恒成立由單調(diào)性可知當(dāng)時,有最大值為4,即;(2)由(1)知,,由柯西不等式知所以,即的最小值為.當(dāng)且僅當(dāng),,時,等號成立【點睛】本題主要考查絕對值不等式的解法,柯西不等式及其應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.20、(1)(2)【解析】分析:(1)先斷定在曲線上,從而需要求,令,求得結(jié)果,注意復(fù)合函數(shù)求導(dǎo)法則,接著應(yīng)用點斜式寫出直線的方程;(2)先將函數(shù)解析式求出,之后借助于導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而求得函數(shù)在相應(yīng)區(qū)間上的最值.詳解:(Ⅰ)當(dāng),.,當(dāng),,所以切線方程為.(Ⅱ),,因為,所以.令,,則在單調(diào)遞減,因為,所以在上增,在單調(diào)遞增.,,因為,所以在區(qū)間上的值域為.點睛:該題考查的是有關(guān)應(yīng)用導(dǎo)數(shù)研究函數(shù)的問題,涉及到的知識點有導(dǎo)數(shù)的幾何意義,曲線在某個點處的切線方程的求法,復(fù)合函數(shù)求導(dǎo),函數(shù)在給定區(qū)間上的最值等,在解題的過程中,需要對公式的正確使用.21、(Ⅰ);(Ⅱ);(Ⅲ)證明見解析.【解析】試題分析:將,求出切線方程求導(dǎo)后討論當(dāng)時和時的單調(diào)性證明,求出實數(shù)的取值范圍先求出、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《索具套環(huán)》規(guī)范
- 安全專業(yè)軟件相關(guān)行業(yè)投資規(guī)劃報告
- 非離子型纖維素醚相關(guān)行業(yè)投資規(guī)劃報告
- 兩家宅基地界線協(xié)議書
- 順行髓內(nèi)釘治療掌骨頸骨折
- 燈光培訓(xùn)資料
- 智慧醫(yī)院綜合管理解決方案(醫(yī)院綜合管控指揮)
- 食品中毒應(yīng)急預(yù)案
- 老年病科急救演練
- 藥店藥師的角色與職責(zé)
- 現(xiàn)代物流技術(shù)的應(yīng)用與創(chuàng)新
- 《配電網(wǎng)供電可靠性》課件
- 眼角膜炎的治療藥物
- 利用人工智能促進(jìn)中小學(xué)教師專業(yè)發(fā)展
- 藥店醫(yī)保服務(wù)管理制度
- 新能源與航空航天技術(shù)的結(jié)合
- 中國銀行交易流水明細(xì)清單
- 通勤車租賃投標(biāo)方案(技術(shù)標(biāo))
- 如何提高數(shù)學(xué)課堂的教學(xué)效率
- 第九章德國新聞事業(yè)史(一)九章德國新聞事業(yè)史(一)第九章德國新聞事業(yè)史(一)第九章德國新聞事業(yè)史(一)
- 建筑企業(yè)宣傳冊ppt
評論
0/150
提交評論