2022-2023學年重慶第二外國語校中考數(shù)學全真模擬試卷含解析_第1頁
2022-2023學年重慶第二外國語校中考數(shù)學全真模擬試卷含解析_第2頁
2022-2023學年重慶第二外國語校中考數(shù)學全真模擬試卷含解析_第3頁
2022-2023學年重慶第二外國語校中考數(shù)學全真模擬試卷含解析_第4頁
2022-2023學年重慶第二外國語校中考數(shù)學全真模擬試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.將一副三角板按如圖方式擺放,∠1與∠2不一定互補的是()A. B. C. D.2.已知拋物線y=x2+bx+c的對稱軸為x=2,若關于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范圍內有兩個相等的實數(shù)根,則c的取值范圍是(

)A.c=4B.﹣5<c≤4C.﹣5<c<3或c=4D.﹣5<c≤3或c=43.對于反比例函數(shù)y=(k≠0),下列所給的四個結論中,正確的是()A.若點(3,6)在其圖象上,則(﹣3,6)也在其圖象上B.當k>0時,y隨x的增大而減小C.過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為kD.反比例函數(shù)的圖象關于直線y=﹣x成軸對稱4.正三角形繞其中心旋轉一定角度后,與自身重合,旋轉角至少為()A.30° B.60° C.120° D.180°5.如圖:A、B、C、D四點在一條直線上,若AB=CD,下列各式表示線段AC錯誤的是()A.AC=AD﹣CD B.AC=AB+BCC.AC=BD﹣AB D.AC=AD﹣AB6.如圖是將正方體切去一個角后形成的幾何體,則該幾何體的左視圖為()A. B. C. D.7.如圖,點O′在第一象限,⊙O′與x軸相切于H點,與y軸相交于A(0,2),B(0,8),則點O′的坐標是()A.(6,4) B.(4,6) C.(5,4) D.(4,5)8.某校今年共畢業(yè)生297人,其中女生人數(shù)為男生人數(shù)的65%,則該校今年的女畢業(yè)生有()A.180人B.117人C.215人D.257人9.若等式(-5)□5=–1成立,則□內的運算符號為()A.+ B.– C.× D.÷10.下列計算結果正確的是()A. B.C. D.11.如果一個扇形的弧長等于它的半徑,那么此扇形稱為“等邊扇形”.將半徑為5的“等邊扇形”圍成一個圓錐,則圓錐的側面積為()A. B.π C.50 D.50π12.如圖,AD∥BC,AC平分∠BAD,若∠B=40°,則∠C的度數(shù)是()A.40° B.65° C.70° D.80°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.比較大?。?_________(填<,>或=).14.如圖,在⊙O中,點B為半徑OA上一點,且OA=13,AB=1,若CD是一條過點B的動弦,則弦CD的最小值為_____.15.如圖所示,邊長為1的小正方形構成的網格中,半徑為1的⊙O的圓心O在格點上,則∠AED的正切值等于__________.16.因式分解:a2﹣a=_____.17.已知:如圖,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.將△AOB繞頂點O,按順時針方向旋轉到△A1OB1處,此時線段OB1與AB的交點D恰好為AB的中點,則線段B1D=__________cm.18.如圖,點A(m,2),B(5,n)在函數(shù)(k>0,x>0)的圖象上,將該函數(shù)圖象向上平移2個單位長度得到一條新的曲線,點A、B的對應點分別為A′、B′.圖中陰影部分的面積為8,則k的值為.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知關于x的方程(a﹣1)x2+2x+a﹣1=1.若該方程有一根為2,求a的值及方程的另一根;當a為何值時,方程的根僅有唯一的值?求出此時a的值及方程的根.20.(6分)如圖,在平面直角坐標系中,已知△ABC三個頂點的坐標分別是A(2,2),B(4,0),C(4,﹣4).請在圖中,畫出△ABC向左平移6個單位長度后得到的△A1B1C1;以點O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請在圖中y軸右側,畫出△A2B2C2,并求出∠A2C2B2的正弦值.21.(6分)如圖,在平行四邊形ABCD中,過點A作AE⊥DC,垂足為點E,連接BE,點F為BE上一點,連接AF,∠AFE=∠D.(1)求證:∠BAF=∠CBE;(2)若AD=5,AB=8,sinD=.求證:AF=BF.22.(8分)如圖所示,飛機在一定高度上沿水平直線飛行,先在點處測得正前方小島的俯角為,面向小島方向繼續(xù)飛行到達處,發(fā)現(xiàn)小島在其正后方,此時測得小島的俯角為.如果小島高度忽略不計,求飛機飛行的高度(結果保留根號).23.(8分)(1)計算:(1﹣)0﹣|﹣2|+;(2)如圖,在等邊三角形ABC中,點D,E分別是邊BC,AC的中點,過點E作EF⊥DE,交BC的延長線于點F,求∠F的度數(shù).24.(10分)先化簡,再求值:3a(a1+1a+1)﹣1(a+1)1,其中a=1.25.(10分)如圖,四邊形ABCD內接于⊙O,∠BAD=90°,點E在BC的延長線上,且∠DEC=∠BAC.(1)求證:DE是⊙O的切線;(2)若AC∥DE,當AB=8,CE=2時,求AC的長.26.(12分)如圖,PB與⊙O相切于點B,過點B作OP的垂線BA,垂足為C,交⊙O于點A,連結PA,AO,AO的延長線交⊙O于點E,與PB的延長線交于點D.(1)求證:PA是⊙O的切線;(2)若tan∠BAD=,且OC=4,求BD的長.27.(12分)某高科技產品開發(fā)公司現(xiàn)有員工50名,所有員工的月工資情況如下表:員工管理人員普通工作人員人員結構總經理部門經理科研人員銷售人員高級技工中級技工勤雜工員工數(shù)(名)1323241每人月工資(元)2100084002025220018001600950請你根據(jù)上述內容,解答下列問題:(1)該公司“高級技工”有名;(2)所有員工月工資的平均數(shù)x為2500元,中位數(shù)為元,眾數(shù)為元;(3)小張到這家公司應聘普通工作人員.請你回答右圖中小張的問題,并指出用(2)中的哪個數(shù)據(jù)向小張介紹員工的月工資實際水平更合理些;(4)去掉四個管理人員的工資后,請你計算出其他員工的月平均工資(結果保留整數(shù)),并判斷能否反映該公司員工的月工資實際水平.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】A選項:∠1+∠2=360°-90°×2=180°;B選項:∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°;C選項:∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,∵∠1+∠EFC=180°,∴∠1+∠2=180°;D選項:∠1和∠2不一定互補.故選D.點睛:本題主要掌握平行線的性質與判定定理,關鍵在于通過角度之間的轉化得出∠1和∠2的互補關系.2、D【解析】解:由對稱軸x=2可知:b=﹣4,∴拋物線y=x2﹣4x+c,令x=﹣1時,y=c+5,x=3時,y=c﹣3,關于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范圍有實數(shù)根,當△=0時,即c=4,此時x=2,滿足題意.當△>0時,(c+5)(c﹣3)≤0,∴﹣5≤c≤3,當c=﹣5時,此時方程為:﹣x2+4x+5=0,解得:x=﹣1或x=5不滿足題意,當c=3時,此時方程為:﹣x2+4x﹣3=0,解得:x=1或x=3此時滿足題意,故﹣5<c≤3或c=4,故選D.點睛:本題主要考查二次函數(shù)與一元二次方程的關系.理解二次函數(shù)與一元二次方程之間的關系是解題的關鍵.3、D【解析】分析:根據(jù)反比例函數(shù)的性質一一判斷即可;詳解:A.若點(3,6)在其圖象上,則(﹣3,6)不在其圖象上,故本選項不符合題意;B.當k>0時,y隨x的增大而減小,錯誤,應該是當k>0時,在每個象限,y隨x的增大而減小;故本選項不符合題意;C.錯誤,應該是過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為|k|;故本選項不符合題意;D.正確,本選項符合題意.故選D.點睛:本題考查了反比例函數(shù)的性質,解題的關鍵是熟練掌握反比例函數(shù)的性質,靈活運用所學知識解決問題,屬于中考??碱}型.4、C【解析】

求出正三角形的中心角即可得解【詳解】正三角形繞其中心旋轉一定角度后,與自身重合,旋轉角至少為120°,故選C.【點睛】本題考查旋轉對稱圖形的概念:把一個圖形繞著一個定點旋轉一個角度后,與初始圖形重合,這種圖形叫做旋轉對稱圖形,這個定點叫做旋轉對稱中心,旋轉的角度叫做旋轉角,掌握正多邊形的中心角的求解是解題的關鍵5、C【解析】

根據(jù)線段上的等量關系逐一判斷即可.【詳解】A、∵AD-CD=AC,∴此選項表示正確;B、∵AB+BC=AC,∴此選項表示正確;C、∵AB=CD,∴BD-AB=BD-CD,∴此選項表示不正確;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此選項表示正確.故答案選:C.【點睛】本題考查了線段上兩點間的距離及線段的和、差的知識,解題的關鍵是找出各線段間的關系.6、C【解析】看到的棱用實線體現(xiàn).故選C.7、D【解析】

過O'作O'C⊥AB于點C,過O'作O'D⊥x軸于點D,由切線的性質可求得O'D的長,則可得O'B的長,由垂徑定理可求得CB的長,在Rt△O'BC中,由勾股定理可求得O'C的長,從而可求得O'點坐標.【詳解】如圖,過O′作O′C⊥AB于點C,過O′作O′D⊥x軸于點D,連接O′B,∵O′為圓心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8?2=6,∴AC=BC=3,∴OC=8?3=5,∵⊙O′與x軸相切,∴O′D=O′B=OC=5,在Rt△O′BC中,由勾股定理可得O′C===4,∴P點坐標為(4,5),故選:D.【點睛】本題考查了切線的性質,坐標與圖形性質,解題的關鍵是掌握切線的性質和坐標計算.8、B【解析】

設男生為x人,則女生有65%x人,根據(jù)今年共畢業(yè)生297人列方程求解即可.【詳解】設男生為x人,則女生有65%x人,由題意得,x+65%x=297,解之得x=180,297-180=117人.故選B.【點睛】本題考查了一元一次方程的應用,根據(jù)題意找出等量關系列出方程是解答本題的關鍵.9、D【解析】

根據(jù)有理數(shù)的除法可以解答本題.【詳解】解:∵(﹣5)÷5=﹣1,∴等式(﹣5)□5=﹣1成立,則□內的運算符號為÷,故選D.【點睛】考查有理數(shù)的混合運算,解答本題的關鍵是明確有理數(shù)的混合運算的計算方法.10、C【解析】

利用冪的乘方、同底數(shù)冪的乘法、合并同類項及零指數(shù)冪的定義分別計算后即可確定正確的選項.【詳解】A、原式,故錯誤;B、原式,故錯誤;C、利用合并同類項的知識可知該選項正確;D、,,所以原式無意義,錯誤,故選C.【點睛】本題考查了冪的運算性質及特殊角的三角函數(shù)值的知識,解題的關鍵是能夠利用有關法則進行正確的運算,難度不大.11、A【解析】

根據(jù)新定義得到扇形的弧長為5,然后根據(jù)扇形的面積公式求解.【詳解】解:圓錐的側面積=?5?5=.故選A.【點睛】本題考查圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.12、C【解析】

根據(jù)平行線性質得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度數(shù).【詳解】解:∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=40°,∴∠BAD=140°,∵AC平分∠DAB,∴∠DAC=∠BAD=70°,∵A∥BC,∴∠C=∠DAC=70°,故選C.【點睛】本題考查了平行線性質和角平分線定義,關鍵是求出∠DAC或∠BAC的度數(shù).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、<【解析】【分析】根據(jù)實數(shù)大小比較的方法進行比較即可得答案.【詳解】∵32=9,9<10,∴3<,故答案為:<.【點睛】本題考查了實數(shù)大小的比較,熟練掌握實數(shù)大小比較的方法是解題的關鍵.14、10【解析】

連接OC,當CD⊥OA時CD的值最小,然后根據(jù)垂徑定理和勾股定理求解即可.【詳解】連接OC,當CD⊥OA時CD的值最小,∵OA=13,AB=1,∴OB=13-1=12,∴BC=,∴CD=5×2=10.故答案為10.【點睛】本題考查了垂徑定理及勾股定理,垂徑定理是:垂直與弦的直徑平分這條弦,并且平分這條弦所對的兩段弧

.15、【解析】

根據(jù)同弧或等弧所對的圓周角相等來求解.【詳解】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD==.故選D.【點睛】本題利用了圓周角定理(同弧或等弧所對的圓周角相等)和正切的概念求解.16、a(a﹣1)【解析】

直接提取公因式a,進而分解因式得出答案【詳解】a2﹣a=a(a﹣1).故答案為a(a﹣1).【點睛】此題考查公因式,難度不大17、1.1【解析】試題解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==1cm,∵點D為AB的中點,∴OD=AB=2.1cm.∵將△AOB繞頂點O,按順時針方向旋轉到△A1OB1處,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.1cm.故答案為1.1.18、2.【解析】試題分析:∵將該函數(shù)圖象向上平移2個單位長度得到一條新的曲線,點A、B的對應點分別為A′、B′,圖中陰影部分的面積為8,∴5﹣m=4,∴m=2,∴A(2,2),∴k=2×2=2.故答案為2.考點:2.反比例函數(shù)系數(shù)k的幾何意義;2.平移的性質;3.綜合題.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(3)a=,方程的另一根為;(2)答案見解析.【解析】

(3)把x=2代入方程,求出a的值,再把a代入原方程,進一步解方程即可;(2)分兩種情況探討:①當a=3時,為一元一次方程;②當a≠3時,利用b2-4ac=3求出a的值,再代入解方程即可.【詳解】(3)將x=2代入方程,得,解得:a=.將a=代入原方程得,解得:x3=,x2=2.∴a=,方程的另一根為;(2)①當a=3時,方程為2x=3,解得:x=3.②當a≠3時,由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.當a=2時,原方程為:x2+2x+3=3,解得:x3=x2=-3;當a=3時,原方程為:-x2+2x-3=3,解得:x3=x2=3.綜上所述,當a=3,3,2時,方程僅有一個根,分別為3,3,-3.考點:3.一元二次方程根的判別式;2.解一元二次方程;3.分類思想的應用.20、(1)見解析(2)【解析】試題分析:(1)直接利用平移的性質得出對應點位置進而得出答案;(2)利用位似圖形的性質得出對應點位置,再利用銳角三角三角函數(shù)關系得出答案.試題解析:(1)如圖所示:△A1B1C1,即為所求;(2)如圖所示:△A2B2C2,即為所求,由圖形可知,∠A2C2B2=∠ACB,過點A作AD⊥BC交BC的延長線于點D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==,∴sin∠ACB===,即sin∠A2C2B2=.考點:作圖﹣位似變換;作圖﹣平移變換;解直角三角形.21、(1)見解析;(2)2.【解析】

(1)根據(jù)相似三角形的判定,易證△ABF∽△BEC,從而可以證明∠BAF=∠CBE成立;(2)根據(jù)銳角三角函數(shù)和三角形的相似可以求得AF的長【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∠AFE=∠D,∴∠C=∠AFB,∴△ABF∽△BEC,∴∠BAF=∠CBE;(2)∵AE⊥DC,AD=5,AB=8,sin∠D=,∴AE=4,DE=3∴EC=5∵AE⊥DC,AB∥DC,∴∠AED=∠BAE=90°,在Rt△ABE中,根據(jù)勾股定理得:BE=∵BC=AD=5,由(1)得:△ABF∽△BEC,∴==即==解得:AF=BF=2【點睛】本題考查相似三角形的判定與性質、平行四邊形的性質、解直角三角形,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答22、【解析】

過點C作CD⊥AB,由∠CBD=45°知BD=CD=x,由∠ACD=30°知AD==x,根據(jù)AD+BD=AB列方程求解可得.【詳解】解:過點C作CD⊥AB于點D,設CD=x,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵,∴AD====x,由AD+BD=AB可得x+x=10,解得:x=5﹣5,答:飛機飛行的高度為(5﹣5)km.23、(1)﹣1+3;(2)30°.【解析】

(1)根據(jù)零指數(shù)冪、絕對值、二次根式的性質求出每一部分的值,代入求出即可;(2)根據(jù)平行線的性質可得∠EDC=∠B=,根據(jù)三角形內角和定理即可求解;【詳解】解:(1)原式=1﹣2+3=﹣1+3;(2)∵△ABC是等邊三角形,∴∠B=60°,∵點D,E分別是邊BC,AC的中點,∴DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°.【點睛】(1)主要考查零指數(shù)冪、絕對值、二次根式的性質;(2)考查平行線的性質和三角形內角和定理.24、2【解析】試題分析:首先根據(jù)單項式乘以多項式的法則以及完全平方公式將括號去掉,然后再進行合并同類項,最后將a的值代入化簡后的式子得出答案.試題解析:解:原式=3a3+6a1+3a﹣1a1﹣4a﹣1=3a3+4a1﹣a﹣1,當a=1時,原式=14+16﹣1﹣1=2.25、(1)證明見解析;(2)AC的長為.【解析】

(1)先判斷出BD是圓O的直徑,再判斷出BD⊥DE,即可得出結論;(2)先判斷出AC⊥BD,進而求出BC=AB=8,進而判斷出△BCD∽△DCE,求出CD,再用勾股定理求出BD,最后判斷出△CFD∽△BCD,即可得出結論.【詳解】(1)如圖,連接BD,∵∠BAD=90°,∴點O必在BD上,即:BD是直徑,∴∠BCD=90°,∴∠DEC+∠CDE=90°.∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE.∵點D在⊙O上,∴DE是⊙O的切線;(2)∵DE∥AC.∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,AF=CF=AC,∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,∴∠CDE=∠CBD.∵∠DCE=∠BCD=90°,∴△BCD∽△DCE,∴,∴,∴CD=1.在Rt△BCD中,BD==1,同理:△CFD∽△BCD,∴,∴,∴CF=,∴AC=2C=.【點睛】考查了圓周角定理,垂徑定理,相似三角形的判定和性質,切線的判定和性質,勾股定理,求出BC=8是解本題的關鍵.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論