版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年江西省萍鄉(xiāng)市普通高校對(duì)口單招數(shù)學(xué)自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.5人排成一排,甲必須在乙之后的排法是()A.120B.60C.24D.12
2.已知向量a=(l,-l),6=(2,x).若A×b=1,則x=()A.-1B.-1/2C.1/2D.1
3.若圓C1:x2+y2=1與圓C2:x2+y2-6x-8y+m=0外切,則m=()A.21B.19C.9D.-11
4.A.10B.5C.2D.12
5.已知全集U={2,4,6,8},A={2,4},B={4,8},則,等于()A.{4}B.{2,4,8}C.{6}D.{2,8}
6.要得到函數(shù)y=sin2x的圖像,只需將函數(shù):y=cos(2x-π/4)的圖像A.向左平移π/8個(gè)單位B.向右平移π/8個(gè)單位C.向左平移π/4個(gè)單位D.向右平移π/4個(gè)單位
7.A.B.C.
8.設(shè)集合{x|-3<2x-1<3},集合B為函數(shù)y=lg(x-1)的定義域,則A∩B=()A.(1,2)B.[1,2]C.[1,2)D.(1,2]
9.把6本不同的書(shū)分給李明和張強(qiáng)兩人,每人3本,不同分法的種類(lèi)數(shù)為()A.
B.
C.
D.
10.(X-2)6的展開(kāi)式中X2的系數(shù)是D()A.96B.-240C.-96D.240
11.設(shè)a,b為實(shí)數(shù),則a2=b2的充要條件是()A.a=bB.a=-bC.a2=b2
D.|a|=|b|
12.展開(kāi)式中的常數(shù)項(xiàng)是()A.-20B.-15C.20D.15
13.A.15,5,25B.15,15,15C.10,5,30D.15,10,20
14.已知x與y之間的一組數(shù)據(jù):則y與x的線性回歸方程為y=bx+a必過(guò)點(diǎn)()A.(2,2)B.(1,2)C.(1.5,0)D.(1.5,4)
15.如果直線3x+y=1與2mx+4y-5=0互相垂直,則m為()A.1
B.
C.
D.-2
16.已知a<0,0<b<1,則下列結(jié)論正確的是()A.a>ab
B.a>ab2
C.ab<ab2
D.ab>ab2
17.己知向量a
=(2,1),b
=(-1,2),則a,b之間的位置關(guān)系為()A.平行B.不平行也不垂直C.垂直D.以上都不對(duì)
18.A.-1B.-4C.4D.2
19.設(shè)平面向量a(3,5),b(-2,1),則a-2b的坐標(biāo)是()A.(7,3)B.(-7,-3)C.(-7,3)D.(7,-3)
20.在等比數(shù)列中,a1+a2=162,a3+a4=18,那么a4+a5等于()A.6B.-6C.±2D.±6
二、填空題(10題)21.已知拋物線的頂點(diǎn)為原點(diǎn),焦點(diǎn)在y軸上,拋物線上的點(diǎn)M(m,-2)到焦點(diǎn)的距離為4,則m的值為_(kāi)____.
22.設(shè)向量a=(x,x+1),b=(1,2),且a⊥b,則x=_______.
23.
24.
25.已知圓柱的底面半徑為1,母線長(zhǎng)與底面的直徑相等,則該圓柱的表面積為_(kāi)____.
26.
27.
28.
29.
30.長(zhǎng)方體中,具有公共頂點(diǎn)A的三個(gè)面的對(duì)角線長(zhǎng)分別是2,4,6,那么這個(gè)長(zhǎng)方體的對(duì)角線的長(zhǎng)是_____.
三、計(jì)算題(10題)31.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說(shuō)明理由。
32.在等差數(shù)列{an}中,前n項(xiàng)和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項(xiàng)公式an.
33.已知函數(shù)f(x)的定義域?yàn)閧x|x≠0},且滿(mǎn)足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡(jiǎn)單說(shuō)明理由.
34.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.
35.己知直線l與直線y=2x+5平行,且直線l過(guò)點(diǎn)(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.
36.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。
37.求焦點(diǎn)x軸上,實(shí)半軸長(zhǎng)為4,且離心率為3/2的雙曲線方程.
38.近年來(lái),某市為了促進(jìn)生活垃圾的分類(lèi)處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類(lèi),并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類(lèi)投放情況,現(xiàn)隨機(jī)抽取了該市四類(lèi)垃圾箱總計(jì)100噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):(1)試估計(jì)“可回收垃圾”投放正確的概率;(2)試估計(jì)生活垃圾投放錯(cuò)誤的概率。
39.有語(yǔ)文書(shū)3本,數(shù)學(xué)書(shū)4本,英語(yǔ)書(shū)5本,書(shū)都各不相同,要把這些書(shū)隨機(jī)排在書(shū)架上.(1)求三種書(shū)各自都必須排在一起的排法有多少種?(2)求英語(yǔ)書(shū)不挨著排的概率P。
40.解不等式4<|1-3x|<7
四、簡(jiǎn)答題(10題)41.在等差數(shù)列中,已知a1,a4是方程x2-10x+16=0的兩個(gè)根,且a4>a1,求S8的值
42.已知函數(shù)(1)求函數(shù)f(x)的最小正周期及最值(2)令判斷函數(shù)g(x)的奇偶性,并說(shuō)明理由
43.如圖,四棱錐P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求證:BC丄平面PAC。(2)求點(diǎn)B到平面PCD的距離。
44.化簡(jiǎn)
45.數(shù)列的前n項(xiàng)和Sn,且求(1)a2,a3,a4的值及數(shù)列的通項(xiàng)公式(2)a2+a4+a6++a2n的值
46.已知雙曲線C:的右焦點(diǎn)為,且點(diǎn)到C的一條漸近線的距離為.(1)求雙曲線C的標(biāo)準(zhǔn)方程;(2)設(shè)P為雙曲線C上一點(diǎn),若|PF1|=,求點(diǎn)P到C的左焦點(diǎn)的距離.
47.設(shè)等差數(shù)列的前n項(xiàng)數(shù)和為Sn,已知的通項(xiàng)公式及它的前n項(xiàng)和Tn.
48.如圖,在直三棱柱中,已知(1)證明:AC丄BC;(2)求三棱錐的體積.
49.已知函數(shù):,求x的取值范圍。
50.已知A,B分別是橢圓的左右兩個(gè)焦點(diǎn),o為坐標(biāo)的原點(diǎn),點(diǎn)P(-1,)在橢圓上,線段PB與y軸的焦點(diǎn)M為線段PB的中心點(diǎn),求橢圓的標(biāo)準(zhǔn)方程
五、解答題(10題)51.
52.已知橢圓C的重心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)的坐標(biāo)分別為F1(4,0),F(xiàn)2(-4,0),且橢圓C上任一點(diǎn)到兩焦點(diǎn)的距離和等于10.求:(1)橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓C上一點(diǎn)M使得直線F1M與直線F2M垂直,求點(diǎn)M的坐標(biāo).
53.已知圓X2+y2=5與直線2x-y-m=0相交于不同的A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).(1)求m的取值范圍;(2)若OA丄OB,求實(shí)數(shù)m的值.
54.已知A,B分別是橢圓的左右兩個(gè)焦點(diǎn),o為坐標(biāo)的原點(diǎn),點(diǎn)P(-1,)在橢圓上,線段PB與y軸的焦點(diǎn)M為線段PB的中心點(diǎn),求橢圓的標(biāo)準(zhǔn)方程
55.如圖,在四棱錐P-ABCD中,PC丄平面ABCD,AB//DC,DC丄AC.(1)求證:DC丄平面PAC;(2)求證:平面PAB丄平面PAC.
56.給定橢圓C:x2/a2+y2/b2(a>b>0),稱(chēng)圓C1:x2+y2=a2+b2為橢圓C的“伴隨圓已知橢圓C的離心率為/2,且經(jīng)過(guò)點(diǎn)(0,1).(1)求橢圓C的方程;(2)求直線l:x—y+3=0被橢圓C的伴隨圓C1所截得的弦長(zhǎng).
57.已知橢圓C:x2/a2+y2/b2=1(a>b>0)的離心率為,在C上;(1)求C的方程;(2)直線L不過(guò)原點(diǎn)O且不平行于坐標(biāo)軸,L與C有兩個(gè)交點(diǎn)A,B,線段AB的中點(diǎn)為M.證明:直線OM的斜率與直線L的斜率的乘積為定值.
58.已知圓C:(x-1)2+y2=9內(nèi)有一點(diǎn)P(2,2),過(guò)點(diǎn)P作直線l交圓C于A、B兩點(diǎn).(1)當(dāng)直線l過(guò)圓心C時(shí),求直線l的方程;(2)當(dāng)直線l的傾斜角為45°時(shí),求弦AB的長(zhǎng).
59.已知{an}為等差數(shù)列,且a3=-6,a6=0.(1)求{an}的通項(xiàng)公式;(2)若等比數(shù)列{bn}滿(mǎn)足b1=-8,b2=a1+a2+a3,求{bn}的前n項(xiàng)和公式.
60.已知橢圓的中心為原點(diǎn),焦點(diǎn)在x軸上,離心率為,且經(jīng)過(guò)點(diǎn)M(4,1),直線l:y=x+m交橢圓于異于M的不同兩點(diǎn)A,B直線MA,MB與x軸分別交于點(diǎn)E,F(xiàn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求m的取值范圍.
六、單選題(0題)61.A.-1B.-4C.4D.2
參考答案
1.C
2.D向量的線性運(yùn)算.由題得A×b=1×2+(-1).x=2-x=1.所以x=1,
3.C圓與圓相切的性質(zhì).圓C1的圓心C1(0,0),半徑r1=1,圓C2的方程可化為(x-3)2+(y-4)2=25-m,所以圓心C2(3,4),
4.A
5.C
6.B三角函數(shù)圖像的性質(zhì).將函數(shù)y=cos(2x-π/4)向右平移π/8個(gè)單位,得到y(tǒng)=cos(2(x-π/8)-π/4)=cos(2x-π/2)=sin2x
7.A
8.D不等式的計(jì)算,集合的運(yùn)算.由題知A=[-1,2],B=(1,+∞),∴A∩B=(1,2]
9.D
10.D
11.D
12.D由題意可得,由于展開(kāi)式的通項(xiàng)公式為,令,求得r=1,故展開(kāi)式的常數(shù)項(xiàng)為。
13.D
14.D線性回歸方程的計(jì)算.由于
15.C由兩條直線垂直可得:,所以答案為C。
16.C命題的真假判斷與應(yīng)用.由題意得ab-ab2=ab(1-b)<0,所以ab<ab2
17.C
18.C
19.A由題可知,a-2b=(3,5)-2(-2,1)=(7,3)。
20.D設(shè)公比等于q,則由題意可得,,解得,或。當(dāng)時(shí),,當(dāng)時(shí),,所以結(jié)果為。
21.±4,
22.-2/3平面向量的線性運(yùn)算.由題意,得A×b=0.所以x+2(x+1)=0.所以x=-2/3.
23.16
24.R
25.6π圓柱的側(cè)面積計(jì)算公式.利用圓柱的側(cè)面積公式求解,該圓柱的側(cè)面積為27x1x2=4π,一個(gè)底面圓的面積是π,所以該圓柱的表面積為4π+27π=6π.
26.-1
27.0
28.-16
29.-2i
30.
31.
32.解:設(shè)首項(xiàng)為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
33.
34.解:(1)因?yàn)閒(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因?yàn)閒(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2
35.解:(1)設(shè)所求直線l的方程為:2x-y+c=0∵直線l過(guò)點(diǎn)(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當(dāng)x=0時(shí),y=-4∴直線l在y軸上的截距為-4
36.
37.解:實(shí)半軸長(zhǎng)為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
38.
39.
40.
41.方程的兩個(gè)根為2和8,又∴又∵a4=a1+3d,∴d=2∵。
42.(1)(2)∴又∴函數(shù)是偶函數(shù)
43.證明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC則BC丄平面PAC(2)設(shè)點(diǎn)B到平面PCD的距離為hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1則△ADC為等邊三角形,且AC=1PA=
PD=PC=2
44.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2
45.
46.(1)∵雙曲線C的右焦點(diǎn)為F1(2,0),∴c=2又點(diǎn)F1到C1的一條漸近線的距離為,∴,即以解得b=
47.(1)∵
∴又∵等差數(shù)列∴∴(2)
48.
49.
X>4
50.點(diǎn)M是線段PB的中點(diǎn)又∵OM丄AB,∴PA丄AB則c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此橢圓的標(biāo)準(zhǔn)方程為
51.
52.
53.
54.點(diǎn)M是線段PB的中點(diǎn)又∵OM丄AB,∴PA丄AB則c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此橢圓的標(biāo)準(zhǔn)方程為
55.(1)∵PC丄平面ABCD,DC包含于平面ABCD,∴PC丄DC.又AC丄DC,PC∩AC=C,PC包含于平面PAC,AC包含于平面PAC,∴CD丄平面PAC.(2)證明∵AB//CD,CD丄平面PAC,∴AB丄平面PAC,AB包含于平面PAB,∴平面PAB丄平面PAC.
56.
57.
58.
59.(1)設(shè)等差數(shù)列{an}的公差為d因?yàn)閍3=-6,a5=0,所以解得a1=-10,d=2所以an=-10+(n-1)×2=2n-12.(2)設(shè)等比數(shù)列{bn}的公比為q.因?yàn)閎2=a1+a2+a3=-24,b1=-8,所以-8q=
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)術(shù)會(huì)議分享醫(yī)療設(shè)備與技術(shù)革新
- 二零二五年度新型路牙材料研發(fā)與應(yīng)用勞務(wù)分包協(xié)議4篇
- 2025年建投公司綜合快訊項(xiàng)目進(jìn)度合同丨大干120天執(zhí)行4篇
- 2024版限量版啤酒銷(xiāo)售協(xié)議模板
- 小學(xué)數(shù)學(xué)教師教育科研能力提升途徑
- 探索游戲化教學(xué)在小學(xué)科學(xué)教育中的多元化應(yīng)用
- 現(xiàn)代企業(yè)如何通過(guò)技術(shù)手段提升安全生產(chǎn)的效率和質(zhì)量
- 科技與教育結(jié)合學(xué)生情緒管理策略的現(xiàn)代解讀
- 小學(xué)數(shù)學(xué)教學(xué)中資源的創(chuàng)造性應(yīng)用探索
- 2025年度高端酒店餐飲部專(zhuān)業(yè)廚師雇傭服務(wù)合同3篇
- 開(kāi)展課外讀物負(fù)面清單管理的具體實(shí)施舉措方案
- 2025年云南中煙工業(yè)限責(zé)任公司招聘420人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025-2030年中國(guó)洗衣液市場(chǎng)未來(lái)發(fā)展趨勢(shì)及前景調(diào)研分析報(bào)告
- 《智能網(wǎng)聯(lián)汽車(chē)智能傳感器測(cè)試與裝調(diào)》電子教案
- 客戶(hù)分級(jí)管理(標(biāo)準(zhǔn)版)課件
- 2023年江蘇省南京市中考化學(xué)真題
- 供電副所長(zhǎng)述職報(bào)告
- 校園欺凌問(wèn)題成因及對(duì)策分析研究論文
- 技術(shù)支持資料投標(biāo)書(shū)
- 老年人意外事件與與預(yù)防
- 預(yù)防艾滋病、梅毒和乙肝母嬰傳播轉(zhuǎn)介服務(wù)制度
評(píng)論
0/150
提交評(píng)論