云南省楚雄彝族自治州2023年高考數(shù)學(xué)二模試卷含解析_第1頁(yè)
云南省楚雄彝族自治州2023年高考數(shù)學(xué)二模試卷含解析_第2頁(yè)
云南省楚雄彝族自治州2023年高考數(shù)學(xué)二模試卷含解析_第3頁(yè)
云南省楚雄彝族自治州2023年高考數(shù)學(xué)二模試卷含解析_第4頁(yè)
云南省楚雄彝族自治州2023年高考數(shù)學(xué)二模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等比數(shù)列滿足,,則()A. B. C. D.2.已知類產(chǎn)品共兩件,類產(chǎn)品共三件,混放在一起,現(xiàn)需要通過(guò)檢測(cè)將其區(qū)分開(kāi)來(lái),每次隨機(jī)檢測(cè)一件產(chǎn)品,檢測(cè)后不放回,直到檢測(cè)出2件類產(chǎn)品或者檢測(cè)出3件類產(chǎn)品時(shí),檢測(cè)結(jié)束,則第一次檢測(cè)出類產(chǎn)品,第二次檢測(cè)出類產(chǎn)品的概率為()A. B. C. D.3.已知函數(shù)的零點(diǎn)為m,若存在實(shí)數(shù)n使且,則實(shí)數(shù)a的取值范圍是()A. B. C. D.4.為了研究國(guó)民收入在國(guó)民之間的分配,避免貧富過(guò)分懸殊,美國(guó)統(tǒng)計(jì)學(xué)家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時(shí),表示收入完全平等.勞倫茨曲線為折線時(shí),表示收入完全不平等.記區(qū)域?yàn)椴黄降葏^(qū)域,表示其面積,為的面積,將稱為基尼系數(shù).對(duì)于下列說(shuō)法:①越小,則國(guó)民分配越公平;②設(shè)勞倫茨曲線對(duì)應(yīng)的函數(shù)為,則對(duì),均有;③若某國(guó)家某年的勞倫茨曲線近似為,則;④若某國(guó)家某年的勞倫茨曲線近似為,則.其中正確的是:A.①④ B.②③ C.①③④ D.①②④5.已知函數(shù),,若總有恒成立.記的最小值為,則的最大值為()A.1 B. C. D.6.已知復(fù)數(shù)z滿足(i為虛數(shù)單位),則z的虛部為()A. B. C.1 D.7.命題“”的否定是()A. B.C. D.8.某醫(yī)院擬派2名內(nèi)科醫(yī)生、3名外科醫(yī)生和3名護(hù)士共8人組成兩個(gè)醫(yī)療分隊(duì),平均分到甲、乙兩個(gè)村進(jìn)行義務(wù)巡診,其中每個(gè)分隊(duì)都必須有內(nèi)科醫(yī)生、外科醫(yī)生和護(hù)士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種9.設(shè)等差數(shù)列的前項(xiàng)和為,若,則()A.10 B.9 C.8 D.710.如圖,已知平面,,、是直線上的兩點(diǎn),、是平面內(nèi)的兩點(diǎn),且,,,,.是平面上的一動(dòng)點(diǎn),且直線,與平面所成角相等,則二面角的余弦值的最小值是()A. B. C. D.11.甲、乙兩名學(xué)生的六次數(shù)學(xué)測(cè)驗(yàn)成績(jī)(百分制)的莖葉圖如圖所示.①甲同學(xué)成績(jī)的中位數(shù)大于乙同學(xué)成績(jī)的中位數(shù);②甲同學(xué)的平均分比乙同學(xué)的平均分高;③甲同學(xué)的平均分比乙同學(xué)的平均分低;④甲同學(xué)成績(jī)的方差小于乙同學(xué)成績(jī)的方差.以上說(shuō)法正確的是()A.③④ B.①② C.②④ D.①③④12.已知,復(fù)數(shù),,且為實(shí)數(shù),則()A. B. C.3 D.-3二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)在內(nèi)有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是________.14.如圖是一個(gè)算法流程圖,若輸出的實(shí)數(shù)的值為,則輸入的實(shí)數(shù)的值為_(kāi)_____________.15.已知x,y>0,且,則x+y的最小值為_(kāi)____.16.一個(gè)村子里一共有個(gè)人,其中一個(gè)人是謠言制造者,他編造了一條謠言并告訴了另一個(gè)人,這個(gè)人又把謠言告訴了第三個(gè)人,如此等等.在每一次謠言傳播時(shí),謠言的接受者都是在其余個(gè)村民中隨機(jī)挑選的,當(dāng)謠言傳播次之后,還沒(méi)有回到最初的造謠者的概率是_______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)(1)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;(2)求證:18.(12分)某中學(xué)準(zhǔn)備組建“文科”興趣特長(zhǎng)社團(tuán),由課外活動(dòng)小組對(duì)高一學(xué)生文科、理科進(jìn)行了問(wèn)卷調(diào)查,問(wèn)卷共100道題,每題1分,總分100分,該課外活動(dòng)小組隨機(jī)抽取了200名學(xué)生的問(wèn)卷成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì),將數(shù)據(jù)按照,,,,分成5組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為“文科方向”學(xué)生,低于60分的稱為“理科方向”學(xué)生.理科方向文科方向總計(jì)男110女50總計(jì)(1)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為是否為“文科方向”與性別有關(guān)?(2)將頻率視為概率,現(xiàn)在從該校高一學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“文科方向”的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、期望和方差.參考公式:,其中.參考臨界值:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82819.(12分)在△ABC中,分別為三個(gè)內(nèi)角A、B、C的對(duì)邊,且(1)求角A;(2)若且求△ABC的面積.20.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)把的參數(shù)方程化為極坐標(biāo)方程:(2)求與交點(diǎn)的極坐標(biāo).21.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若,設(shè),證明:,,使.22.(10分)已知函數(shù).當(dāng)時(shí),求不等式的解集;,,求a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由a1+a3+a5=21得a3+a5+a7=,選B.2、D【解析】

根據(jù)分步計(jì)數(shù)原理,由古典概型概率公式可得第一次檢測(cè)出類產(chǎn)品的概率,不放回情況下第二次檢測(cè)出類產(chǎn)品的概率,即可得解.【詳解】類產(chǎn)品共兩件,類產(chǎn)品共三件,則第一次檢測(cè)出類產(chǎn)品的概率為;不放回情況下,剩余4件產(chǎn)品,則第二次檢測(cè)出類產(chǎn)品的概率為;故第一次檢測(cè)出類產(chǎn)品,第二次檢測(cè)出類產(chǎn)品的概率為;故選:D.【點(diǎn)睛】本題考查了分步乘法計(jì)數(shù)原理的應(yīng)用,古典概型概率計(jì)算公式的應(yīng)用,屬于基礎(chǔ)題.3、D【解析】

易知單調(diào)遞增,由可得唯一零點(diǎn),通過(guò)已知可求得,則問(wèn)題轉(zhuǎn)化為使方程在區(qū)間上有解,化簡(jiǎn)可得,借助對(duì)號(hào)函數(shù)即可解得實(shí)數(shù)a的取值范圍.【詳解】易知函數(shù)單調(diào)遞增且有惟一的零點(diǎn)為,所以,∴,問(wèn)題轉(zhuǎn)化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據(jù)“對(duì)勾函數(shù)”可知函數(shù)在區(qū)間的值域?yàn)?,?故選D.【點(diǎn)睛】本題考查了函數(shù)的零點(diǎn)問(wèn)題,考查了方程有解問(wèn)題,分離參數(shù)法及構(gòu)造函數(shù)法的應(yīng)用,考查了利用“對(duì)勾函數(shù)”求參數(shù)取值范圍問(wèn)題,難度較難.4、A【解析】

對(duì)于①,根據(jù)基尼系數(shù)公式,可得基尼系數(shù)越小,不平等區(qū)域的面積越小,國(guó)民分配越公平,所以①正確.對(duì)于②,根據(jù)勞倫茨曲線為一條凹向橫軸的曲線,由圖得,均有,可得,所以②錯(cuò)誤.對(duì)于③,因?yàn)椋?,所以③錯(cuò)誤.對(duì)于④,因?yàn)?,所以,所以④正確.故選A.5、C【解析】

根據(jù)總有恒成立可構(gòu)造函數(shù),求導(dǎo)后分情況討論的最大值可得最大值最大值,即.根據(jù)題意化簡(jiǎn)可得,求得,再換元求導(dǎo)分析最大值即可.【詳解】由題,總有即恒成立.設(shè),則的最大值小于等于0.又,若則,在上單調(diào)遞增,無(wú)最大值.若,則當(dāng)時(shí),,在上單調(diào)遞減,當(dāng)時(shí),,在上單調(diào)遞增.故在處取得最大值.故,化簡(jiǎn)得.故,令,可令,故,當(dāng)時(shí),,在遞減;當(dāng)時(shí),,在遞增.故在處取得極大值,為.故的最大值為.故選:C【點(diǎn)睛】本題主要考查了根據(jù)導(dǎo)數(shù)求解函數(shù)的最值問(wèn)題,需要根據(jù)題意分析導(dǎo)數(shù)中參數(shù)的范圍,再分析函數(shù)的最值,進(jìn)而求導(dǎo)構(gòu)造函數(shù)求解的最大值.屬于難題.6、D【解析】

根據(jù)復(fù)數(shù)z滿足,利用復(fù)數(shù)的除法求得,再根據(jù)復(fù)數(shù)的概念求解.【詳解】因?yàn)閺?fù)數(shù)z滿足,所以,所以z的虛部為.故選:D.【點(diǎn)睛】本題主要考查復(fù)數(shù)的概念及運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.7、D【解析】

根據(jù)全稱命題的否定是特稱命題,對(duì)命題進(jìn)行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【點(diǎn)睛】本題考查全稱命題的否定,難度容易.8、B【解析】

根據(jù)條件2名內(nèi)科醫(yī)生,每個(gè)村一名,3名外科醫(yī)生和3名護(hù)士,平均分成兩組,則分1名外科,2名護(hù)士和2名外科醫(yī)生和1名護(hù)士,根據(jù)排列組合進(jìn)行計(jì)算即可.【詳解】2名內(nèi)科醫(yī)生,每個(gè)村一名,有2種方法,3名外科醫(yī)生和3名護(hù)士,平均分成兩組,要求外科醫(yī)生和護(hù)士都有,則分1名外科,2名護(hù)士和2名外科醫(yī)生和1名護(hù)士,若甲村有1外科,2名護(hù)士,則有C3若甲村有2外科,1名護(hù)士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.【點(diǎn)睛】本題主要考查了分組分配問(wèn)題,解決這類問(wèn)題的關(guān)鍵是先分組再分配,屬于??碱}型.9、B【解析】

根據(jù)題意,解得,,得到答案.【詳解】,解得,,故.故選:.【點(diǎn)睛】本題考查了等差數(shù)列的求和,意在考查學(xué)生的計(jì)算能力.10、B【解析】

為所求的二面角的平面角,由得出,求出在內(nèi)的軌跡,根據(jù)軌跡的特點(diǎn)求出的最大值對(duì)應(yīng)的余弦值【詳解】,,,,同理為直線與平面所成的角,為直線與平面所成的角,又,在平面內(nèi),以為軸,以的中垂線為軸建立平面直角坐標(biāo)系則,設(shè),整理可得:在內(nèi)的軌跡為為圓心,以為半徑的上半圓平面平面,,為二面角的平面角,當(dāng)與圓相切時(shí),最大,取得最小值此時(shí)故選【點(diǎn)睛】本題主要考查了二面角的平面角及其求法,方法有:定義法、三垂線定理及其逆定理、找公垂面法、射影公式、向量法等,依據(jù)題目選擇方法求出結(jié)果.11、A【解析】

由莖葉圖中數(shù)據(jù)可求得中位數(shù)和平均數(shù),即可判斷①②③,再根據(jù)數(shù)據(jù)集中程度判斷④.【詳解】由莖葉圖可得甲同學(xué)成績(jī)的中位數(shù)為,乙同學(xué)成績(jī)的中位數(shù)為,故①錯(cuò)誤;,,則,故②錯(cuò)誤,③正確;顯然甲同學(xué)的成績(jī)更集中,即波動(dòng)性更小,所以方差更小,故④正確,故選:A【點(diǎn)睛】本題考查由莖葉圖分析數(shù)據(jù)特征,考查由莖葉圖求中位數(shù)、平均數(shù).12、B【解析】

把和代入再由復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡(jiǎn),利用虛部為0求得m值.【詳解】因?yàn)闉閷?shí)數(shù),所以,解得.【點(diǎn)睛】本題考查復(fù)數(shù)的概念,考查運(yùn)算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設(shè),,設(shè),函數(shù)為奇函數(shù),,函數(shù)單調(diào)遞增,,畫出簡(jiǎn)圖,如圖所示,根據(jù),解得答案.【詳解】,設(shè),,則.原函數(shù)等價(jià)于函數(shù),即有兩個(gè)解.設(shè),則,函數(shù)為奇函數(shù).,函數(shù)單調(diào)遞增,,,.當(dāng)時(shí),易知不成立;當(dāng)時(shí),根據(jù)對(duì)稱性,考慮時(shí)的情況,,畫出簡(jiǎn)圖,如圖所示,根據(jù)圖像知:故,即,根據(jù)對(duì)稱性知:.故答案為:.【點(diǎn)睛】本題考查了函數(shù)零點(diǎn)問(wèn)題,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算能力,畫出圖像是解題的關(guān)鍵.14、【解析】

根據(jù)程序框圖得到程序功能,結(jié)合分段函數(shù)進(jìn)行計(jì)算即可.【詳解】解:程序的功能是計(jì)算,若輸出的實(shí)數(shù)的值為,則當(dāng)時(shí),由得,當(dāng)時(shí),由,此時(shí)無(wú)解.故答案為:.【點(diǎn)睛】本題主要考查程序框圖的識(shí)別和判斷,理解程序功能是解決本題的關(guān)鍵,屬于基礎(chǔ)題.15、1【解析】

處理變形x+y=x()+y結(jié)合均值不等式求解最值.【詳解】x,y>0,且,則x+y=x()+y1,當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí)x=4,y=2,取得最小值1.故答案為:1【點(diǎn)睛】此題考查利用均值不等式求解最值,關(guān)鍵在于熟練掌握均值不等式的適用條件,注意考慮等號(hào)成立的條件.16、【解析】

利用相互獨(dú)立事件概率的乘法公式即可求解.【詳解】第1次傳播,謠言一定不會(huì)回到最初的人;從第2次傳播開(kāi)始,每1次謠言傳播,第一個(gè)制造謠言的人被選中的概率都是,沒(méi)有被選中的概率是.次傳播是相互獨(dú)立的,故為故答案為:【點(diǎn)睛】本題考查了相互獨(dú)立事件概率的乘法公式,考查了考生的分析能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)見(jiàn)解析.【解析】

(1)將問(wèn)題轉(zhuǎn)化為對(duì)任意恒成立,換元構(gòu)造新函數(shù)即可得解;(2)結(jié)合(1)可得,令,求導(dǎo)后證明其導(dǎo)函數(shù)單調(diào)遞增,結(jié)合,即可得函數(shù)的單調(diào)區(qū)間和最小值,即可得證.【詳解】(1)對(duì)任意恒成立等價(jià)于對(duì)任意恒成立,令,,則,當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;有最大值,.(2)證明:由(1)知,當(dāng)時(shí),即,,,令,則,令,則,在上是增函數(shù),又,當(dāng)時(shí),;當(dāng)時(shí),,在上是減函數(shù),在上是增函數(shù),,即,.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)解決恒成立問(wèn)題,考查了利用導(dǎo)數(shù)證明不等式,考查了計(jì)算能力和轉(zhuǎn)化化歸思想,屬于中檔題.18、(1)列聯(lián)表見(jiàn)解析,有;(2)分布列見(jiàn)解析,,.【解析】

(1)由頻率分布直方圖可得分?jǐn)?shù)在、之間的學(xué)生人數(shù),可得列聯(lián)表.根據(jù)列聯(lián)表計(jì)算的值,結(jié)合參考臨界值表可得到結(jié)論;(2)從該校高一學(xué)生中隨機(jī)抽取1人,求出該人為“文科方向”的概率.由題意,求出分布列,根據(jù)公式求出期望和方差.【詳解】(1)由頻率分布直方圖可得分?jǐn)?shù)在之間的學(xué)生人數(shù)為,在之間的學(xué)生人數(shù)為,所以低于60分的學(xué)生人數(shù)為120.因此列聯(lián)表為理科方向文科方向總計(jì)男8030110女405090總計(jì)12080200又,所以有99%的把握認(rèn)為是否為“文科方向”與性別有關(guān).(2)易知從該校高一學(xué)生中隨機(jī)抽取1人,則該人為“文科方向”的概率為.依題意知,所以(),所以的分布列為0123P所以期望,方差.【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn),考查離散型隨機(jī)變量的分布列、期望和方差,屬于中檔題.19、(1);(2).【解析】

(1)整理得:,再由余弦定理可得,問(wèn)題得解.(2)由正弦定理得:,,,再代入即可得解.【詳解】(1)由題意,得,∴;(2)由正弦定理,得,,∴.【點(diǎn)睛】本題主要考查了正、余弦定理及三角形面積公式,考查了轉(zhuǎn)化思想及化簡(jiǎn)能力,屬于基礎(chǔ)題.20、(1)(2)與交點(diǎn)的極坐標(biāo)為,和【解析】

(1)先把曲線化成直角坐標(biāo)方程,再化簡(jiǎn)成極坐標(biāo)方程;(2)聯(lián)立曲線和曲線的方程解得即可.【詳解】(1)曲線的直角坐標(biāo)方程為:,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論