版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年黑龍江省綏化市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.A.A.0B.1C.2D.任意值
3.
4.
5.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo),f'(x)>0,則在(0,1)內(nèi)f(x)().A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量
6.
7.曲線Y=x-3在點(1,1)處的切線的斜率為().
A.-1
B.-2
C.-3
D.-4
8.A.A.1
B.
C.
D.1n2
9.
A.僅有水平漸近線
B.既有水平漸近線,又有鉛直漸近線
C.僅有鉛直漸近線
D.既無水平漸近線,又無鉛直漸近線
10.設(shè)f(x)=sin2x,則f(0)=()
A.-2B.-1C.0D.2
11.
12.函數(shù)f(x)在點x=x0處連續(xù)是f(x)在x0處可導(dǎo)的A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分條件也非必要條件
13.下列()不是組織文化的特征。
A.超個體的獨特性B.不穩(wěn)定性C.融合繼承性D.發(fā)展性
14.等于()。A.-1B.-1/2C.1/2D.1
15.
16.
17.
18.
19.設(shè)y=2-cosx,則y'=
A.1-sinxB.1+sinxC.-sinxD.sinx
20.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。
A.ln2
B.ln1
C.lne
D.
二、填空題(20題)21.
22.
23.
24.
25.
26.設(shè)區(qū)域D:0≤x≤1,1≤y≤2,則
27.
28.
29.
30.31.32.
33.
34.
35.
36.
37.38.39.過坐標原點且與平面2x-y+z+1=0平行的平面方程為______.
40.
三、計算題(20題)41.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.42.證明:
43.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
44.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.45.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.46.求曲線在點(1,3)處的切線方程.47.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
48.49.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則
50.
51.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.52.
53.
54.將f(x)=e-2X展開為x的冪級數(shù).
55.求微分方程y"-4y'+4y=e-2x的通解.
56.求微分方程的通解.57.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.58.59.
60.四、解答題(10題)61.設(shè)y=ln(1+x2),求dy。62.證明:
63.
64.
65.(本題滿分8分)
66.
67.
68.
69.
70.求y"-2y'=2x的通解.五、高等數(shù)學(xué)(0題)71.
六、解答題(0題)72.
參考答案
1.D
2.B
3.A
4.D解析:
5.A由于f(x)在(0,1)內(nèi)有f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.
6.A解析:
7.C點(1,1)在曲線.由導(dǎo)數(shù)的幾何意義可知,所求切線的斜率為-3,因此選C.
8.C本題考查的知識點為定積分運算.
因此選C.
9.A
10.D由f(c)=sin2x可得f"(x)=cos2x(2x)"=2cos2x,f"(0)=2cos0=2,故選D。
11.C解析:
12.B由可導(dǎo)與連續(xù)的關(guān)系:“可導(dǎo)必定連續(xù),連續(xù)不一定可導(dǎo)”可知,應(yīng)選B。
13.B解析:組織文化的特征:(1)超個體的獨特性;(2)相對穩(wěn)定性;(3)融合繼承性;(4)發(fā)展性。
14.C本題考查的知識點為定積分的運算。
故應(yīng)選C。
15.C
16.A
17.A解析:
18.D
19.D解析:y=2-cosx,則y'=2'-(cosx)'=sinx。因此選D。
20.D由拉格朗日定理
21.2xy(x+y)+3
22.
23.
解析:
24.3
25.26.本題考查的知識點為二重積分的計算。
如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長、寬都為1的正形,可知其面積為1。因此
27.00解析:28.x—arctanx+C.
本題考查的知識點為不定積分的運算.
29.230.1
31.32.1
33.034.ln(1+x)+C本題考查的知識點為換元積分法.
35.ee解析:
36.
37.
本題考查的知識點為不定積分計算.
38.本題考查的知識點為兩個:參數(shù)方程形式的函數(shù)求導(dǎo)和可變上限積分求導(dǎo).
39.已知平面的法線向量n1=(2,-1,1),所求平面與已知平面平行,可設(shè)所求平面方程為2x-y+z+D=0,將x=0,y=0,z=0代入上式,可得D=0,因此所求平面方程為2x-y+z=0.
40.2
41.
42.
43.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%44.由二重積分物理意義知
45.
列表:
說明
46.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
47.
48.49.由等價無窮小量的定義可知
50.
51.
52.
則
53.
54.
55.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
56.57.函數(shù)的定義域為
注意
58.
59.由一階線性微分方程通解公式有
60.
61.
62.
63.
64.
65.本題考查的知識點為求二元隱函數(shù)的偏導(dǎo)數(shù).
解法1將所給方程兩端關(guān)于x求偏導(dǎo)數(shù),可得
將所給方程兩端關(guān)于y求偏導(dǎo)數(shù),可得
解法2
【解題指導(dǎo)】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年甲乙雙方關(guān)于門面租房的合同協(xié)議書
- 2024年環(huán)保型農(nóng)藥研發(fā)與技術(shù)轉(zhuǎn)讓合同
- 2024版政府吸引外資項目協(xié)議范本版B版
- 2024廣告代理發(fā)布協(xié)議
- 2025年度出差人員交通與住宿統(tǒng)一管理服務(wù)合同3篇
- 2025年度ISO 13485醫(yī)療器械質(zhì)量管理體系認證服務(wù)合同3篇
- 2024年項目停工責(zé)任分配合同范本
- 2024年技術(shù)開發(fā)合作協(xié)議(附專利權(quán)歸屬條款)
- 2024年環(huán)保污水處理設(shè)施工程承包協(xié)議版B版
- 2024年項目勞務(wù)分包簡易合同
- 常用靜脈藥物溶媒的選擇
- 當(dāng)代西方文學(xué)理論知到智慧樹章節(jié)測試課后答案2024年秋武漢科技大學(xué)
- 2024年預(yù)制混凝土制品購銷協(xié)議3篇
- 2024年中國陶瓷碗盆市場調(diào)查研究報告
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實踐指導(dǎo)材料之22:“8運行-8.1運行策劃和控制”(雷澤佳編制-2025B0)
- 單位網(wǎng)絡(luò)安全攻防演練
- 新交際英語(2024)一年級上冊Unit 1~6全冊教案
- 神經(jīng)外科基礎(chǔ)護理課件
- 2024年中國心力衰竭診斷和治療指南2024版
- HCCDP 云遷移認證理論題庫
- 工程結(jié)算單(樣本)
評論
0/150
提交評論