![2023年江蘇省蘇州市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)_第1頁](http://file4.renrendoc.com/view/f2248e01bee308e36dfc55380411cf00/f2248e01bee308e36dfc55380411cf001.gif)
![2023年江蘇省蘇州市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)_第2頁](http://file4.renrendoc.com/view/f2248e01bee308e36dfc55380411cf00/f2248e01bee308e36dfc55380411cf002.gif)
![2023年江蘇省蘇州市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)_第3頁](http://file4.renrendoc.com/view/f2248e01bee308e36dfc55380411cf00/f2248e01bee308e36dfc55380411cf003.gif)
![2023年江蘇省蘇州市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)_第4頁](http://file4.renrendoc.com/view/f2248e01bee308e36dfc55380411cf00/f2248e01bee308e36dfc55380411cf004.gif)
![2023年江蘇省蘇州市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)_第5頁](http://file4.renrendoc.com/view/f2248e01bee308e36dfc55380411cf00/f2248e01bee308e36dfc55380411cf005.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年江蘇省蘇州市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.曲線y=x2+5x+4在點(-1,0)處切線的斜率為
A.2B.-2C.3D.-3
2.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線
3.A.A.
B.
C.
D.
4.
5.
6.下列關(guān)系正確的是()。A.
B.
C.
D.
7.方程x2+y2-z=0表示的二次曲面是()。A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面
8.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo),f'(x)>0,則在(0,1)內(nèi)f(x)().A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量
9.
10.
11.
12.
13.A.
B.
C.-cotx+C
D.cotx+C
14.用待定系數(shù)法求微分方程y"-y=xex的一個特解時,特解的形式是(式中α、b是常數(shù))。A.(αx2+bx)ex
B.(αx2+b)ex
C.αx2ex
D.(αx+b)ex
15.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個特解,則C1y1+C2y2().A.A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解16.微分方程y'=1的通解為A.y=xB.y=CxC.y=C-xD.y=C+x
17.設(shè)Y=e-5x,則dy=().
A.-5e-5xdx
B.-e-5xdx
C.e-5xdx
D.5e-5xdx
18.()。A.2πB.πC.π/2D.π/419.A.A.0
B.
C.
D.∞
20.
二、填空題(20題)21.
22.設(shè).y=e-3x,則y'________。
23.24.
25.
26.
27.
28.
29.
30.設(shè)f(x)=xex,則f'(x)__________。
31.
32.
33.
34.35.
36.
37.若函數(shù)f(x)=x-arctanx,則f'(x)=________.
38.
39.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。
40.三、計算題(20題)41.
42.
43.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
44.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
45.求曲線在點(1,3)處的切線方程.46.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則
47.求微分方程y"-4y'+4y=e-2x的通解.
48.49.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.50.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.51.證明:
52.
53.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
54.
55.將f(x)=e-2X展開為x的冪級數(shù).56.求微分方程的通解.57.58.59.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
60.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.四、解答題(10題)61.
62.
63.64.求y"-2y'=2x的通解.
65.
66.若y=y(x)由方程y=x2+y2,求dy。
67.
68.
69.
70.五、高等數(shù)學(xué)(0題)71.設(shè)生產(chǎn)某產(chǎn)品利潤L(x)=5000+x一0.0001x2百元[單位:件],問生產(chǎn)多少件時利潤最大,最大利潤是多少?
六、解答題(0題)72.
參考答案
1.C解析:
2.D
3.D
4.A
5.B
6.B由不定積分的性質(zhì)可知,故選B.
7.C本題考查的知識點為二次曲面的方程。
將x2+y2-z=0與二次曲面標(biāo)準(zhǔn)方程對照,可知其為旋轉(zhuǎn)拋面,故應(yīng)選C。
8.A由于f(x)在(0,1)內(nèi)有f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.
9.C解析:
10.B
11.A
12.B
13.C本題考查的知識點為不定積分基本公式.
14.Ay"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1
y"-y=xex中自由項f(x)=xex,α=1是特征單根,應(yīng)設(shè)y*=x(ax+b)ex=(αx2+bx)ex。
所以選A。
15.B本題考查的知識點為線性常系數(shù)微分方程解的結(jié)構(gòu).
已知y1,y2為二階線性常系數(shù)齊次微分方程y"+p1y'+p2y=0的兩個解,由解的結(jié)構(gòu)定理可知C1y1+C2y2為所給方程的解,因此應(yīng)排除D.又由解的結(jié)構(gòu)定理可知,當(dāng)y1,y2線性無關(guān)時,C1y1+C2y2為y"+p1y'+p2y=0的通解,因此應(yīng)該選B.
本題中常見的錯誤是選C.這是由于忽略了線性常系數(shù)微分方程解的結(jié)構(gòu)定理中的條件所導(dǎo)致的錯誤.解的結(jié)構(gòu)定理中指出:“若y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個線性無關(guān)的特解,則C1y1+C2y2為所給微分方程的通解,其中C1,C2為任意常數(shù).”由于所給命題中沒有指出)y1,y2為線性無關(guān)的特解,可知C1y1+C2y2不一定為方程的通解.但是由解的結(jié)構(gòu)定理知C1y1+C2y2為方程的解,因此應(yīng)選B.
16.D
17.A
【評析】基本初等函數(shù)的求導(dǎo)公式與導(dǎo)數(shù)的四則運(yùn)算法則是常見的試題,一定要熟記基本初等函數(shù)求導(dǎo)公式.對簡單的復(fù)合函數(shù)的求導(dǎo),應(yīng)該注意由外到里,每次求一個層次的導(dǎo)數(shù),不要丟掉任何一個復(fù)合層次.
18.B
19.A本題考查的知識點為“有界變量與無窮小量的乘積為無窮小量”的性質(zhì).這表明計算時應(yīng)該注意問題中的所給條件.
20.D
21.3/2
22.-3e-3x
23.1/2本題考查了對∞-∞型未定式極限的知識點,
24.
25.
26.y=2x+1
27.2
28.
本題考查的知識點為可分離變量方程的求解.
可分離變量方程求解的一般方法為:
(1)變量分離;
(2)兩端積分.
29.
30.(1+x)ex
31.(-33)
32.
解析:
33.(03)(0,3)解析:34.本題考查的知識點為偏導(dǎo)數(shù)的運(yùn)算。由于z=x2+3xy+2y2-y,可得
35.
36.22解析:
37.x2/(1+x2)本題考查了導(dǎo)數(shù)的求導(dǎo)公式的知識點。
38.
39.0因為sinx為f(x)的一個原函數(shù),所以f(x)=(sinx)"=cosx,f"(x)=-sinx。
40.41.由一階線性微分方程通解公式有
42.
則
43.
44.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%45.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
46.由等價無窮小量的定義可知
47.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
48.
49.函數(shù)的定義域為
注意
50.
51.
52.53.由二重積分物理意義知
54.
55.
56.
57.
58.
59.
60.
列表:
說明
61.
62.63.由于64.y"-2y'=x為二階常系數(shù)線性微分方程.特征方程為y2-2r=0.特征根為r1=0,r2=2.相應(yīng)齊次方程的通解為y=C1+C2e2x.r1=0為特征根,可設(shè)y*=x(Ax+B)為原方程特解,代入原方程可得
故為所求通解.
65.
66.
67.
68.
69.
70.
71.L(x)=5000+x一0.0001x2L"(x)=1—0.0002x=0:x=5000;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中空設(shè)備轉(zhuǎn)讓合同范本
- 2025年度教師國際交流項目與合同履行協(xié)議
- led燈供貨合同范本
- 2025年度建筑施工安全生產(chǎn)技術(shù)改造合同
- 個人房屋預(yù)售合同范本
- 在建房屋抵押擔(dān)保借款合同范本
- 個人制作肥料合同范例
- 2025年度體育賽事贊助合同履行主體變更標(biāo)準(zhǔn)模板
- 2025年度智能家居公司兼職產(chǎn)品測試工程師聘用合同
- 2024年環(huán)境保護(hù)行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略規(guī)劃報告
- 新部編版小學(xué)六年級下冊語文第二單元測試卷及答案
- 5《這些事我來做》(說課稿)-部編版道德與法治四年級上冊
- 2025年福建福州市倉山區(qū)國有投資發(fā)展集團(tuán)有限公司招聘筆試參考題庫附帶答案詳解
- 2025年人教版新教材數(shù)學(xué)一年級下冊教學(xué)計劃(含進(jìn)度表)
- GB/T 45107-2024表土剝離及其再利用技術(shù)要求
- 2025長江航道工程局招聘101人歷年高頻重點提升(共500題)附帶答案詳解
- 2025年國新國際投資有限公司招聘筆試參考題庫含答案解析
- 2025年八省聯(lián)考四川高考生物試卷真題答案詳解(精校打印)
- 《供電營業(yè)規(guī)則》
- 企業(yè)員工退休管理規(guī)章制度(3篇)
- 五年級上冊脫式計算100題及答案
評論
0/150
提交評論