版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年浙江省寧波市普通高校對口單招數(shù)學自考預測試題(含答案)學校:________班級:________姓名:________考號:________
一、單選題(10題)1.不等式lg(x-1)的定義域是()A.{x|x<0}B.{x|1<x}C.{x|x∈R}D.{x|0<x<1}
2.函數(shù)y=lg(x+1)的定義域是()A.(-∞,-1)B.(-∞,1)C.(-1,+∞)D.(1,-∞)
3.設復數(shù)z=1+i(i為虛數(shù)單位),則2/z+z2=()A.l+iB.l-iC.-l-iD.-l+i
4.A.2B.3C.4
5.等比數(shù)列{an}中,若a2
=10,a3=20,則S5等于()A.165B.160C.155D.150
6.已知互為反函數(shù),則k和b的值分別是()A.2,
B.2,
C.-2,
D.-2,
7.A.
B.
C.
D.U
8.已知sin(5π/2+α)=1/5,那么cosα=()A.-2/5B.-1/5C.1/5D.2/5
9.A.b>a>0B.b<a<0C.a>b>0D.a<b<0
10.已知平面向量a=(1,3),b(-1,1),則ab=A.(0,4)B.(-1,3)C.0D.2
二、填空題(10題)11.某田徑隊有男運動員30人,女運動員10人.用分層抽樣的方法從中抽出一個容量為20的樣本,則抽出的女運動員有______人.
12.
13.設集合,則AB=_____.
14.
15.設f(x)是定義在R上的奇函數(shù),當x≤0時,f(x)=2x2-x,則f⑴=______.
16.拋物線y2=2x的焦點坐標是
。
17.以點(1,0)為圓心,4為半徑的圓的方程為_____.
18.若直線6x-4x+7=0與直線ax+2y-6=0平行,則a的值等于_____.
19.已知正實數(shù)a,b滿足a+2b=4,則ab的最大值是____________.
20.1+3+5+…+(2n-b)=_____.
三、計算題(5題)21.己知{an}為等差數(shù)列,其前n項和為Sn,若a3=6,S3=12,求公差d.
22.有語文書3本,數(shù)學書4本,英語書5本,書都各不相同,要把這些書隨機排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語書不挨著排的概率P。
23.從含有2件次品的7件產品中,任取2件產品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
24.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。
25.在等差數(shù)列{an}中,前n項和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項公式an.
四、簡答題(10題)26.在等差數(shù)列中,已知a1,a4是方程x2-10x+16=0的兩個根,且a4>a1,求S8的值
27.在拋物線y2=12x上有一弦(兩端點在拋物線上的線段)被點M(1,2)平分.(1)求這條弦所在的直線方程;(2)求這條弦的長度.
28.已知等差數(shù)列{an},a2=9,a5=21(1)求{an}的通項公式;(2)令bn=2n求數(shù)列{bn}的前n項和Sn.
29.解不等式組
30.如圖:在長方體從中,E,F(xiàn)分別為和AB和中點。(1)求證:AF//平面。(2)求與底面ABCD所成角的正切值。
31.以點(0,3)為頂點,以y軸為對稱軸的拋物線的準線與雙曲線3x2-y2+12=0的一條準線重合,求拋物線的方程。
32.由三個正數(shù)組成的等比數(shù)列,他們的倒數(shù)和是,求這三個數(shù)
33.證明上是增函數(shù)
34.化簡a2sin(-1350°)+b2tan405°-(a-b)2cot765°-2abcos(-1080°)
35.已知函數(shù).(1)求f(x)的定義域;(2)判斷f(x)的奇偶性,并加以證明;(3)a>1時,判斷函數(shù)的單調性并加以證明。
五、解答題(10題)36.已知橢圓的兩焦點為F1(-1,0),F2(1,0),P為橢圓上的一點,且2|F1F2|PF1|+|PF2|.(1)求此橢圓的標準方程;(2)若點P在第二象限,∠F2F1P=120°,求△PF1F2的面積.
37.已知函數(shù)(1)f(π/6)的值;(2)求函數(shù)f(x)的最小正周期和單調遞增區(qū)間.
38.
39.已知函數(shù)f(x)=log21+x/1-x.(1)求f(x)的定義域;(2)討論f(x)的奇偶性;(3)用定義討論f(x)的單調性.
40.解不等式4<|1-3x|<7
41.已知{an}為等差數(shù)列,且a3=-6,a6=0.(1)求{an}的通項公式;(2)若等比數(shù)列{bn}滿足b1=-8,b2=a1+a2+a3,求{bn}的前n項和公式.
42.甲、乙兩人進行投籃訓練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.
43.已知函數(shù)f(x)=4cosxsin(x+π/6)-1.(1)求f(x)的最小正周期;(2)求f(x)在區(qū)間[-π/6,π/4]上的最大值和最小值.
44.
45.如圖,在四棱錐P-ABCD中,PC丄平面ABCD,AB//DC,DC丄AC.(1)求證:DC丄平面PAC;(2)求證:平面PAB丄平面PAC.
六、單選題(0題)46.隨著互聯(lián)網(wǎng)的普及,網(wǎng)上購物已經(jīng)逐漸成為消費時尚,為了解消費者對網(wǎng)上購物的滿意情況,某公司隨機對4500名網(wǎng)上購物消費者進行了調查(每名消費者限選一種情況回答),統(tǒng)計結果如表:根據(jù)表中數(shù)據(jù),估計在網(wǎng)上購物的消費者群體中對網(wǎng)上購物“比較滿意”或“滿意”的概率是()A.7/15B.2/5C.11/15D.13/15
參考答案
1.B
2.C函數(shù)的定義.x+1>0所以x>-1.
3.A復數(shù)的計算.∵Z=1+i,∴2/z+z2=2/1+i(1+i)2===1-i+2i=1+i.
4.B
5.C
6.B因為反函數(shù)的圖像是關于y=x對稱,所以k=2.然后把一式中的x用y的代數(shù)式表達,再把x,y互換,代入二式,得到m=-3/2.
7.B
8.C同角三角函數(shù)的計算sin(5π/2+α)=sin(π/2+α)=cosα=-1/5.
9.D
10.D
11.5分層抽樣方法.因為男運動員30人,女運動員10人,所以抽出的女運動員有10f(10+30)×20=1/4×20=5人.
12.{x|1<=x<=2}
13.{x|0<x<1},
14.(-∞,-2)∪(4,+∞)
15.-3.函數(shù)的奇偶性的應用.∵f(x)是定義在只上的奇函數(shù),且x≤0時,f(x)-2x2-x,f(1)==-f(-1)=-2x(-1)2+(-l)=-3.
16.(1/2,0)拋物線y2=2px(p>0)的焦點坐標為F(P/2,0)。∵拋物線方程為y2=2x,
∴2p=2,得P/2=1/2
∵拋物線開口向右且以原點為頂點,
∴拋物線的焦點坐標是(1/2,0)。
17.(x-1)2+y2=16圓的方程.當圓心坐標為(x0,y0)時,圓的-般方程為(x-x0)+(y-y0)=r2.所以,(x-1)2+y2=16
18.-3,
19.2基本不等式求最值.由題
20.n2,
21.
22.
23.
24.
25.解:設首項為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
26.方程的兩個根為2和8,又∴又∵a4=a1+3d,∴d=2∵。
27.∵(1)這條弦與拋物線兩交點
∴
28.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)
∴數(shù)列為首項b1=32,q=16的等比數(shù)列
29.x2-6x+8>0,∴x>4,x<2(1)(2)聯(lián)系(1)(2)得不等式組的解集為
30.
31.由題意可設所求拋物線的方程為準線方程為則y=-3代入得:p=12所求拋物線方程為x2=24(y-3)
32.設等比數(shù)列的三個正數(shù)為,a,aq由題意得解得,a=4,q=1或q=解得這三個數(shù)為1,4,16或16,4,1
33.證明:任取且x1<x2∴即∴在是增函數(shù)
34.原式=
35.(1)-1<x<1(2)奇函數(shù)(3)單調遞增函數(shù)
36.
37.
38.
39.(1)要使函數(shù)f(x)=㏒21+x/1-x有意義,則須1+x/1-x>0解得-1<x<1,所以f(x)的定義域為{x|-1<x<1}.(2)因為f(x)的定義域為{x|-1<x<1},且f(-x)=㏒2(1+x/1-x)-1=-㏒21+x/1-x=-f(x).所以f(x)是定義在(-1,1)上的奇函數(shù).(3)設-1<x1<x2<1,則f(x1)-f(x2)=log1+x1/1+x2=㏒(1+x1)(1-x2)f(1-x1)(1+x2)∵-1<x1<x2<1
40.
41.(1)設等差數(shù)列{an}的公差為d因為a3=-6,a5=0,所以解得a1=-10,d=2所以an=-10+(n-1)×2=2n-12.(2)設等比數(shù)列{bn}的公比為q.因為b2=a1+a2+a3=-24,b1=-8,所以-8q=-24,q=3.所以數(shù)列{bn}的前n項和公式為Sn=b1(1-qn)/1-q=4(1-3n)
42.
43.
44.
45.(1)∵PC丄平面ABCD,DC包含于平面ABCD,∴PC丄DC.又AC丄DC,PC∩AC=C,PC包含于
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 澄海中學高一數(shù)學試卷
- 擬南芥核質轉運蛋白TRN1參與干旱脅迫應答的機理研究
- 2025年度銀行借款調解協(xié)議書及金融消費者權益保護公約
- 二零二五年度電子商務平臺員工離職解除合同范本
- 2025年度美術作品版權登記與保護合同
- 二零二五年度全屋定制裝修質保服務協(xié)議書
- 二零二五年度人才引進協(xié)議書:綠色能源研發(fā)項目合作
- 常州小升初部分數(shù)學試卷
- 二零二五年度商業(yè)空間租賃合同協(xié)議
- 2025年度能源項目融資租賃服務協(xié)議
- 道路瀝青工程施工方案
- 內陸?zhàn)B殖與水產品市場營銷策略考核試卷
- 票據(jù)業(yè)務居間合同模板
- 承包鋼板水泥庫合同范本(2篇)
- DLT 572-2021 電力變壓器運行規(guī)程
- 公司沒繳社保勞動仲裁申請書
- 損傷力學與斷裂分析
- 2024年縣鄉(xiāng)教師選調進城考試《教育學》題庫及完整答案(考點梳理)
- 車借給別人免責協(xié)議書
- 應急預案評分標準表
- “網(wǎng)絡安全課件:高校教師網(wǎng)絡安全與信息化素養(yǎng)培訓”
評論
0/150
提交評論