數(shù)學(xué)練習(xí)冊(cè)答案_第1頁(yè)
數(shù)學(xué)練習(xí)冊(cè)答案_第2頁(yè)
數(shù)學(xué)練習(xí)冊(cè)答案_第3頁(yè)
數(shù)學(xué)練習(xí)冊(cè)答案_第4頁(yè)
數(shù)學(xué)練習(xí)冊(cè)答案_第5頁(yè)
已閱讀5頁(yè),還剩44頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1

2

C1習(xí)題解答高等數(shù)學(xué)習(xí)題一一.單項(xiàng)選擇題1、A2、D3、C二.填空題3x23x1(x1)21、2、(-9,1)白斑病白斑病vb三.計(jì)算題1、(1)解函數(shù)要有意義,必須滿足x0x0定義域?yàn)?1,0)(0,1]1x20即1x1(2)解函數(shù)要有意義,必須滿足3x0x0解得x1或1x3111x3.(1)解由yex1得xlny1交換x、y得反函數(shù)為ylnx1(2)解由yxx111y1y交換x、y得反函數(shù)為y1x1x得x4.(1)解只有t=0時(shí),能;t取其它值時(shí),因?yàn)?t21,arcsinx無(wú)定義1不能,因?yàn)?x1,此時(shí)y(2)解x1無(wú)意義25.解(1)yeuuv2varccosww2x1(2)令yyy22ylnv1v1uux21則yeuuvx2vsin(xm)meww2x32x06.解g[f(x)](1x)21x0x11x7.解設(shè)f(x)axbxc2abc2解得c4a1b54a2bc1c4所以223習(xí)題二一.單項(xiàng)選擇題1、A2、B3、D二.填空題1、>12、單調(diào)增加三.計(jì)算題1、(1)解因?yàn)閒(x)xsin(x)xsinxf(x)所以函數(shù)是偶函數(shù)1(2)解因?yàn)閒(x)ln(1x2x)lnln(1x2x)f(x)1x2x所以函數(shù)是奇函數(shù)x1x0(x1)x0f(x)0x00x0f(x)(3)解x1x0(x1)x0所以函數(shù)是奇函數(shù)112.解因?yàn)閥sin2xcos2x22而cos2x的周期為,所以ysin2x是周期函數(shù),周期為3.解由V1h得h3rvr232表面積:s1r2h22rrrr29v21r242r69v2r2(r0)222rrf(x)ex1ex(1ex))f(x)四證明e1e(1exxx習(xí)題三一.單項(xiàng)選擇題1、C2、C3、B4、C二.填空題1、12、a3、4、2,05、1三.判斷正誤1、對(duì);2、對(duì);3、錯(cuò)nn21四.(1)證明令xnn1n2n1nx0nn211只要n,取N[]當(dāng)nN時(shí),恒有x0nnnn21所以lim04A2(2)證明因?yàn)閘imf(x)A(A0)x,對(duì)取定的,存在M>0,當(dāng)x>M時(shí),有f(x)Af(x)AA2故當(dāng)x>M時(shí),f(x)A2習(xí)題四一.單項(xiàng)選擇題1、B2、B3、B4、D二.填空題2、0,63、64、2,-21、ea三.判斷正誤1、錯(cuò);2、錯(cuò);3、錯(cuò);四.計(jì)算題1、原式=lim(x2)(x1)limx21x1(1x)(1x)x12x111x2、原式=limxlimx0x1x111x3、原式=lim(1x)(13x3x2)lim13x3x23)(1)xx1x2(1x1x13n2n121()n3n13n1lim33314、原式=lim223n1()n1n1()n133111111115、原式=lim[(1)()(n2n12n12)]32352lim(1n11122n122)1n(n1)(2n1)n36、、原式=lim3(1222n2)n3lim2n3n23n2n3n212n3n2lim2n12lime0sinx17、因?yàn)閤xlimexsinx0所以x5習(xí)題五一、1.B,2.A,3.B二、1.sinxxtanx三、1.2.0(1)解:limsin7x7tan5x5x0(2)解:這是有界函數(shù)乘無(wú)窮小量,故limxsin0x0xxsin5xlim1sin5x1sin5x55x11(3)解:limxxx01sin3xlimsin3x33x0xsin3xx0x(4)解:原式=limsinxlimxsin11(后一項(xiàng)是無(wú)窮小量乘有界函數(shù))x0xx0x2.2222原式lim(1)n22lim[(1)2]2lim(1)e1e2n2(1)2nnnnnn111x1elim(1)(2)原式=xlim1x(x)1xx3e33x223x2222)x3)x3(3)lim(1x22(3)原式=lim(1x1原式lim(13x)3x3e3(中間思維過(guò)程同前)(4)x02n21(5)原式limnln(nn2)limnln(12)limln(1)limln(1)n22nnnnnnn四.1.證明:n11......1nn2n2nn2n22n2nnlimnn1,故由夾逼準(zhǔn)則知,原式成立.而limnn2nn22.證明:只要證明原數(shù)列單調(diào)有界就可以達(dá)到目的xx22x,即xxxx2x1xn1nnn1nnnnn而0<<x1故,x1x0,即xx0,xx.故數(shù)列單調(diào)遞增且有界,極限存在.nnnn1nn1nxx22x(x22x1)11(x1)21limx1n1nnnnnnn6習(xí)題六一、1.B,2.B,3.B,4.B,5。B二、1.(,1)(2,),2??扇ィ?。1個(gè)三、1.解:1xlim(1x)(1x)2,limx1a(1x)a(1x)ax11xlim(13x)(13x3x2)3b(13x)limx1b(13x)bx1故是同階無(wú)窮小.又當(dāng)a2,b3時(shí),是等價(jià)無(wú)窮小.2.解:由limf(x)limf(x)f(0)有a1x0x0四、證明:設(shè)f(x5)3=xx1,f(x)顯然在區(qū)間1,上2連續(xù),且f(1)30,f(2)250.由零點(diǎn)定理知,在區(qū)間1,2上至少存在一點(diǎn),使f()0.原問(wèn)題得證.習(xí)題七一、1.A,2.C二、1.充分,必要,2。-2,3。必要三、1.(1)解:1-111......11,(11n)1(11)(1)1...(11n)(1)2232n2223nn22222而lim(11n)lim(11n)由夾0逼,定理知:1lim(12321)(11)...(1)02nn2222nnn(2)解:0nm原式limxn1nmxx0mnmxx02.解:f(x)x00間斷點(diǎn)x為第二類(lèi)11/xx03.解:原式為lim(1a)x2(ba)xb10有a1b1x1x四、1。證明:0f(x)1,f(x)在[0,1]上連續(xù),由介值定理知結(jié)論成立2.證明:7設(shè)f(x)xcosx,f(x)在[-,]上連續(xù).又f()0,f()0,222222由零點(diǎn)定理知,至少存在一點(diǎn),使得f()=0即,使方程x=co有s根x[-,]22習(xí)題八一、1.B,2.A,3。D二、1.-2,(limf(2x)42limf(2x)2x4limf(x)2,x0xxx0x0又f'(0)limf(x)f(0)limf(x)f(0)(奇函數(shù))xxx0x0f'(0)f'(0)limf(x)f(0)limf(x)f(0)2f'(0)2limf(x)xxxx0x0x0故f'(0)2)2.1limf(x2h)f(x)2h0,(h0時(shí),f(x2h)f(x)2h是h的高階無(wú)窮小0000hh0lim(f(x2h)f(x)2)0limf(x2h)f(x)20000hhh0h0f(x2h)f(x)2(2)lim2h0002hf(x2h)f(x)1f(x)1lim2h0002h0三、1.(1)解:f(x)limyxlimf(xx)f(x)lim[(xx)2(xx)1][x2x1]xxx0x0x0limx22xxxlim(2xx1)2x1xx0x0(2)解:y2x1,令y0(切線平行于x軸,斜率為0),得x1,代入原方程得y。32413故切點(diǎn)坐標(biāo)為(,)242.(1)解:原式limf(xx)f(x)f'(x)A00x0x0(2)解:原式lim[f(xh)f(x)][f(x)f(xh)]f'(x)limf(xh)f(x)00000h0h0h0h02f'(x)2A03.(1)解:82(1x)212,limx0故在分段點(diǎn)(1x)212lim2.左右導(dǎo)數(shù)存在且相等,xxx0x=1處可導(dǎo)。(2)解:xksin1x0(無(wú)窮小量乘有界函數(shù),在分段點(diǎn))x=0處可導(dǎo)。xlimx0f(0x)f(0)limxx04。解:(1要)在x=處0連續(xù),須limf(x)f(0),即limf(x)alimf(x)1,x0x0x0abxaxblimf(0)lime11.x(2)要在x=處0可導(dǎo),須f(0)(=0f)即,limf(0)limx+-x0x=0處連續(xù)可導(dǎo)。x0x0x0故ab1時(shí),f(x)在習(xí)題九一、1.D,2.D,3.A1,2.-2(f()f(1)(1)1f(1)x)1二、1.f'(sinx)cosx2xxxx2xx13.3ln39,66xx3x2lnx2e2xx2enisx,(3)。x,(4)。2x63x3三、1.(1),(2)。2x24)14x22.(1)3(3x)2,(2)(2x1)sin(x2x)2xlnx2,(x,(3)21112sin(24x),(6)1(5),(7)xlnxlnlnxxx2a2x2a22xcos2x2sinx(8)x32x[f(e2x)2xe2xf(e2x)],(ee)f(eex),(2)3、(1)xxx(3)cosxf(sinx)2xf(x21),(4)f(cosx)2cos2x1,f(x)2x1f(sinx)2sin2x12四(1)證明:f(x)f(x)f(x)(x)f(x)f(x)f(x)f(x)f(x)同理:f(x)f(x)f(x)(x)f(x)f(x)f(x),原命題得證。(2)證明:f(xT)f(x)f(xT)f(x)f(xT)(xT)f(xT)f(x),即原命題得證。9習(xí)題十、1一.D2.C二、1.x92.0三、計(jì)算題1.求下列函數(shù)的高階導(dǎo)數(shù)(1)ye2xsin3x,求y"解:y2e2xsin3x3e2xcos3xy5e2xsin3x12e2xcos3x1x21111(12x1x1求y(提示:x21(2)設(shè)y))n()1x12x1yln解:y(n)(1)n12(n2)!(x1)(n1)(n2)!(x1)(n1)(n2)2.設(shè)f(x)和(x)都三階可導(dǎo),yf[(x)],求dy,d3ydxdx223解:y(x)f[(x)]y(x)f[(x)](x)f[(x)]2y(x)f[(x)](x)(x)f[(x)](x)2(x)f[(x)]2(x)(x)f[(x)](x)f[(x)]3(x)(x)f[(x)](x)f[(x)](x)23、(1)x33xyy33y1解:3x23y3xy3y2y3y0yx2yy2x1(2)解:yey(yxy)xy2xyeyyxyyxy2xey4、(1)解:lnyxlnlnx1111ylnlnxx2xlnxxy1(lnlnxln2x)ylnxx2x10(2)解:lny4ln(2x3)1ln(x2)1ln(2x1)2318122x32(x2)3(2x1)yy(2x3)4x2812y32x12x32x46x3)3x3y2y3ay3axy05、解:26x6y(y)3y2y3ay3ay3axy02yx2ayaxy2y2x2y(y)2ay2axy26、求曲線y1在x12處的切線方程,法線方程x11解:kyx2x124x2y4(x1)1切線方程:42法線方程:y1414(x12)習(xí)題十一一、1.AC2.A3.B12二、1.Ax2.2xf(x2)dx2xf(x2)dx3.2xcsin2xcexcln1xcx21x2三、1、(1)dy(1x2)dx1x2f(x)e(2)x2df(x)2xex2dx(3)ydxxdyexdxeydy0yexdydxeyx2、(1)dy2dtan(12xx)1112cos(12x2)d(12x2)8xcos(12x2)dx8dyx1dxcos311(2)dy(1e10xd(1)1(e5x2e10xde5x))1e5x5dx1e10xe10x(10dx)1(e)5x2dy15dx2x02、arctan0.98arctan1arctanxx1(0.02)0.0144r3Vdv4rdr23、V34r3%Vrr%4、y2xexxe2xyyx(2xexx2exx)yx2ex2x5、R(Q)PQ10QQ25R(Q)R(Q)Q10Q52R(Q)10Q511p15pp7、(1)Qe55e5pQ(2)略習(xí)題十二一、1.D2.A3.C4.B5.D6.A二、1.12.103.04.a(chǎn)neax5.(1ln)xexxxxxxeexex(1ln)x12f(3x)f(0)3三、1、原式=hinx0f(0)22x32322、(1)yxxyxx(lnx1)yaa(lna1)xalimxxaaaa(lna1)xaxa(2)lim(axaa)(xaaa)aalnaaaa1aa(lna1)xaxa3、(1)e(1y)(yxy)0xyx0y0y(0)1e0(1y(0))(00y(0))0(yxy)1y0(2)y1x0ye(e0y)y(0)0ey(0)e22edydxx0x0f(x)2xsin1x2cos(11)xx24、xx2sin10f(o)limx0x0x5、設(shè)f(x)處處可導(dǎo)有l(wèi)imeax1ba2limb(1sinx)a2ba2xxx0x0limeaxba3limbsinx既xxx0x0limeaxba3bxx0limaeaxb且lim(eaxba3)0x0x0既abab2且ab1有6、f(x)2(xa)(x)(xa)(x)f(a)0213limf(x)fa()xaxalim2(xa)(x)(xa)2(x)0xaxalim2(x)(xa)(x)xa2(a)limf(x)Ax0∴l(xiāng)imf(x)0x0四、∵x又∵limf(x)f(o)∴f(o)0x0于是∴l(xiāng)imf(x)f(o)limAf(x)x0xx0u0即:f(o)A可尋習(xí)題十三、1.A2.D一、1.32.二2三、計(jì)算題:lim1、(1)原式o3x26xo3x2x21x11x2lim(2)原式cos2xx222lim122xx2cos2x2lim2cossinx01x2200exex2cosx(3)原式limx01olimlimx1lim1(x)0inx1(4)原式xx0x0x0xx2limn10(5)原式2ne2xxm(mn)amnm1mnmn(6)原式n1nnm)a(nm14lim(exx(ex11x))(7)原式x0ex1exlxim0(ex1)xexx0exexxexlim1sinxlim(1sinx)x0e(8)原式=sinx1limf1(sin2x)2sinxcoxlimf1(sin2x)=2、原式x04x32x2x0limf11(sin2x)2sinxcox634x2x0四、證明題:(a,pa2qar),(b,pb2qbr)(1)證:區(qū)間編點(diǎn)為f(a)f(b)()pabq兩點(diǎn)連線斜率為abf(a)f(b)abf1()又∵∴p(ab)q2pqab于是2即總是位于區(qū)間的正中點(diǎn)1(arctyxarctq1)12x1x4x2(2)21(1)2xx22x2x01x1x44∴arctyxarctq1c22x當(dāng)x1時(shí),arcty1arctq1c222∴c44212arctyx2arctq即:x224、設(shè)ymx∴mamb1(ab)∴m(ab)1(ab)a1bbaabma(ab)即:b15abmab(ab)b3、設(shè)f(x)xex2f(0)10f(2)f(x)1e0x則只有一實(shí)根習(xí)題十四、1一.C2.C3.B4.B、1f(x)0f(x)不二.2.03.(0,0)三、計(jì)算題:1、解:y1(x1)3(x1)3(x1)2(x1)22(2x1)y0得x1,x1令121(,)f(x)在內(nèi)遞減,21在內(nèi)遞增。(,)22、解:f13x22axbf1(1)32ab0f(1)1ab12f11(1)6a2b0∴a10,b133、解:f(1)ab2f11(x)6ax2b∴a1,b3時(shí),點(diǎn)(1,-2)為曲線的拐點(diǎn)。22(x1)(x1)331limx4、解:y1為水平漸近線x1為垂直漸近線xlim(x1)(x1)33x1四、證明題:f(x)m(1x)x1、證:當(dāng)f1(x)x0時(shí)1x0f(o)fxm∴f1(x)0()(1x)x即m(1x)x2、證:f(x)x7x2f(o)20f(2)0為一∴f(x)在(0,2)內(nèi)使f(x)0,個(gè)根∴f(x)至少有又∵f(x)7x10616∴x7x2只有一個(gè)負(fù)根習(xí)題十五導(dǎo)數(shù)的應(yīng)用總習(xí)題一、計(jì)算題1、計(jì)算下列極限x(1)原式=limx1xlim1x21()1x2211xxx2x1令t1x2limetlimettt(2)原式=limex21x0tx2lnxlnx1lime1(3)原式=limexlimex1eexxlimxlnx0xxx3ax24x3(4)原式=limxa2a36ax24x3,因?yàn)閘im(3ax24x3)a3,lim(2a36ax24x3)0,所以xaxa原式=arctanaarctanan1limarctanaarctanax1nx(5)原式=limn11xn2x211a(a)x2][(x1)21(a)2x1(x1)2alimx2x3ax3(2x1)limx2[(x1)2a2](x2a2)a(6)令t1,則x,x1時(shí),t0xt11原式=lim[11ln(1t)]limtln(1t)lim1tlim11tt2t22t2(1t)2t0t0t0t02、解:由題意,limf(x)f(0)e12x011(1x)x1ln[(1x)e1limln(1x)xxex0而limf(x)lim[]limex]……(1)x2xex0x0x011又limln(1x)xlim1xlim2(1x)11x22x2x0x0x0171limf(x)e代入(1)式,得:2x0所以limf(x)limf(x)f(0)e12,即函數(shù)fx在x=0連續(xù)。()x0x02x23、解:f'(x)2x(x1)(x1),令xxf'(x)0,得x1。列表:2x(,1)1(1,0)(1,)(0,1)10f'(x)f(x)負(fù)0正負(fù)正單調(diào)減少單調(diào)增加單調(diào)減少單調(diào)增加f'(x)[(xa)2]'[(xa)2]'2(xa)2nx2annnn4、解:iiiii1i1i1i11xn令f'(x)0,得na;又f''(x)2n0ii11當(dāng)x所以,na時(shí),取得f(x)極小值。ini1二、證明題:1、證:由已知,f(x)在[a,c]連續(xù),在(a,c)可導(dǎo),由拉格朗日中值定理,(a,c)f'()f(c)f(a),……(1)ca1,使得1因?yàn)閏a,f(a)0,f(c)0,有f'()01f(x)在[c,b]應(yīng)用拉格朗日中值定理,對(duì)同理,再結(jié)合已知,(c,b)f'()f(b)f(c)0……(2)bc2,使得2對(duì)f'(x)在[,]應(yīng)用拉格朗日中值定理,12,1f()f()f''()(,)(a,b),使得21221f''()0由(1),(2)式可見(jiàn)2、證:設(shè)f(x)ex(1x),有f'(x)ex1,f''(x)ex令f'(x)0,得x0;又f''(x)ex0唯一解:所以x0是f(x)ex(1x)唯一的極小值點(diǎn),因而是f(x)ex(1x)的最小值點(diǎn)。所以xR,都有f(x)f(0),因此ex1x,等號(hào)僅在x0時(shí)成立。183、證:設(shè)F(x)exf(x),任取f(x)的兩個(gè)零點(diǎn)f(x)f(x),不妨設(shè)xx2121由已知,F(xiàn)(x)exf(x)在[x,x]可導(dǎo),在(x,x)連續(xù),且F(x)F(x)0121212由羅爾中值定理,(x,x),使:F'()012即e[f()f'()]0f()f'()0由此即證得在f(x)的任意兩個(gè)零點(diǎn)間,必有f(x)f'(x)的零點(diǎn)sin3x4、證:設(shè)f(x)asinxa...asin(2n1)x,32n112n可導(dǎo),且f(0)0則f(x)在[0,]連續(xù),在(0,),22f()aa2...(1)a2n10,則f()f(0)n1n2321由羅爾中值定理,(0,),使:f'()02而f'(x)acosxacos3x...acos(2n1)x12n即方程acosxacos3x...acos(2n1)x0在(0,)內(nèi)至少有一根212n5、證:設(shè)f(x)x3xsinx,則f'(x)x21cosx,f''(x)xsinx62因?yàn)?x2時(shí),xsinx,所以f''(x)0,即f'(x)單調(diào)增加,有f'(x)f'(0)0,又有f(x)單調(diào)增加,得f(x)f(0)0,即3xsinx0sinxxxx36619習(xí)題十六不定積分的概念與性質(zhì)一、單項(xiàng)選擇題:1、A2、D3、B4、C5、C二、填空題:1、F'(x)f(x),F(xiàn)(x)C(C為任意常數(shù))3、函數(shù)f(x)在區(qū)間[a,b]連續(xù)2、C4、積分yYf(x)(xx)(注:Y[f(x)dx]|),000xx三、計(jì)算題:(1)原式=x2dxxC(2)原式=x8dx158x8C253715231ln2ln(2e)(2e)x(2e)xdxxCC(3)原式=ln(2e)(4)原式=1x21dx(111x2)dxxarctanxC1x25(2)x[25(2)x]dx2x32C2x52x33x(ln2ln3)C(5)原式=ln3(6)原式=111(1cosx)dxxsinxC222(7)原式=12xx2dx(x2122x12x32)dx(2x1243x32x5)C5x(8)原式=1dxsec2xdx1tanxC122cos2x220習(xí)題十七不定積分的換元積分法一、單項(xiàng)選擇題:1、D2、C3、C4、D二、填空題:11、F(ex)C2、2f(x)CF(axb)C3、a三、計(jì)算題(2x3)5dx(2x3)5d(2x3)1(2x3)4C121、(1)原式=8(2)原式=ed(3x)1eC13x3x33(3)原式=1d(lnx)ln|lnx|Clnx1(4)原式=2(x25)2d(x25)13(x25)C13211(5)原式=exd1eCxx141dx113x13xd()arctanC(6)原式=3x3x62621()21()221213d(3x)1arcsin(3x)C(7)原式=1(3x)23(8)原式=cos3xdcosx1cos4xC4(9)原式=cos3xdcosx1cos2xC21(10)原式=3(1x3)2dx31(1x3)2d(1x3)2(1x3)2C11339(11)原式=1dexln(ex1)Ce1x1(12)原式=21d(x22x3)x22x3Cx22x3esinxdsinxesinxC(13)原式=cos(2ex4)dexcos(2ex4)d(2ex4)1sin(2ex4)C12(14)原式=2tan2xtan2xdxtan2x(sec2x1)dx(15)原式=tan3x(sec2x1)dxtan2xdtanxtan2xdx321tan3xtanxxC3=e111exdx(ex)21dexarctanexC(16)原式2x2、(1)解:令xsint,則dxcostdtcost1costdt(11cost=11t)dx(1sec2)dxttantC原式222tx因?yàn)閠arcsinx,tan211x2,xarcsinx原式=C11x23x(2)解:令222sint,則xsint,dxcostdt334sin2t原式dx92costdt4sin2tdt27x2=3x2cost321()222(1cos2t)dt2(t1sin2t)C272273x3x3x3x49x2,因?yàn)閠arcsin23xx,sin2t2sintcost21()22222=27arcsin49x2C原式218111dxdx(3)解:原式=61(x1)6(x2x1)22611(x1)6d(x16)arcsin(x1)C62=11dxd(3x1)(4)解:原式3(3x1)26(3x1)(6)22而dxln|xx2a2|C,所以x2a21原式ln|(3x1)9x26x7|C=3(5)解:令t6x,則xt6,dx6t5dt22=tt46t56tt11dt6(t11)dt1t12tdt61t2dt原式33t26t6ln|1t|C33x66x6ln(16x)Ct2x3,則xt23,dxtdt(6)解:令2dt(1t11)dttln|1t|C2x3ln(12x3)Ct原式=t123習(xí)題十八不定積分分部積分法一、填空題:1、4sinx2xcosxC2、xexexCcosx2C22123、xcosxsinxC,二、計(jì)算題:1、求下列不定積分:xdx)xex(1)原式=xdex(xexeexCxarcsinxxdarcsinxxarcsinxxdx1x2(2)原式=xarcsinx1x2C2x(sec2x1)dxxsecxdxxdx(3)原式=xsec2xdxxdtanxxtanxtanxdxxtanxln|cosx|C其中1所以原式=xtanxln|cosx|x2C2(4)設(shè)Icoslnxdx則Ixcoslnxxdcoslnxxcoslnxsinlnxdxxcoslnxxsinlnxxdsinlnxxcoslnxxsinlnxcoslnxdx即IxcoslnxxsinlnxI,解得:I1x(coslnxsinlnx)C21cos2xdxdx1ecos2xdxecos2xdx1eexx(5)原式=exxx22222Iecos2xdx,則:xIexcos2xedcos2xexcos2x2esin2xdxxxexcos2x2(exsin2xedsin2x)excos2x2exsin2x4ecos2xdxxx即,Iexcos2x2exsin2x4I,解得:I1(excos2x2exsin2x)C51ex1(excos2x2exsin2x)C代入原式=210(6)令tx,則xt2,dx2tdt原式=2edt2(tetet)C2ex(x1)Ct241=3lnxdx313(x3lnxx3dlnx)13x3lnxx2dx1(7)原式313x3lnxx3C191lnxdx3xln2xxdln2xxln2x2lnxdx(8)原式=3xln2x2(xlnxxdlnx)xln2x2xlnx2dxxln2x2xlnx2xC1=2xsin2xdxxdcos2x14(xcos2xcos2xdx)1(9)原式414xcos2x1sin2xC8Iexcosxdx,則:(10)令cosxexsinxdxIcosxdex(excosxexdcosx)exsinxexdsinxexcosxsinxdexexcosxexIexcosxex即sinxI,解得:I12ex(sinxcosx)CIsec3xdx,則:(11)令I(lǐng)secxsec2xdxsecxdtanxsecxtanxtanxdsecxsecxtanxsecxtan2xdxsecxtanxsec3xdxsecxdx即Isecxtanx1ln1sinxI,解得:21sinx11sinxCI1secxtanxln41sinx2xdf'(x)xf'(x)f'(x)dxxf'(x)f(x)C=(12)原式xf'(x)dxx3df(x)x3f(x)3x2f(x)dx2、解:3由已知,f(x)(sinxxcosxsinx,所以:)'xx2x3f'(x)dxx(xcosxsinx)3(xcosxsinx)dxx3f'(x)dx(x26)cosx4xsinxC所以25習(xí)題十九不定積分總習(xí)題一.選擇題:df(x)dg(x),則有(A、B、C)1.若A.f(x)g(x)C.df(x)dg(x)B.f'(x)g'(x)D.df'(x)dxdg'(x)dx2.下列等式正確的是(A)df(x)dxf(x)B.f(x)dxf(x)A.dxdf(x)f(x)D.df(x)dxf(x)C.sinxf(x)3.若f(x)的導(dǎo)函數(shù)是,則有一個(gè)原函數(shù)為(D)A.1sinxB.1sinxC.1cosxD.1cosxf(x)連續(xù),F(xiàn)(x)是f(x)的一個(gè)原函數(shù),則(A)*4.若A.當(dāng)f(x)是奇函數(shù)時(shí)F(x)必為偶函數(shù)B.當(dāng)f(x)是偶函數(shù)時(shí)F(x)必為奇函數(shù)C.當(dāng)f(x)是周期函數(shù)時(shí)F(x)必為周期函數(shù)D.當(dāng)f(x)是單調(diào)函數(shù)時(shí)F(x)必為單調(diào)函數(shù)二.填空題:3f(x)dx3Cx1.設(shè)x是f(x)的一個(gè)原函數(shù),則。f'(lnx)1x,則f(x)xeC2.設(shè)xf(t)連續(xù),df(t)dsintf(t)cost3.設(shè)dtx2f(x1)ln,且:f[g(x)]lnx,則g(x)dxx2lnx1C4*.2x22三.計(jì)算題:1.求下列不定積分:(1)sinx(2)xdxdxx(1x)3x解:dxsinx解:x11d(1x)2sinxdx(1x)3dx(1x)3x(1x)2d(1x)(1x)3d(1x)11cosxC261111x2(1x)2C(3)sinxcosxx7dx(4)dx1sinxx41)2(4sinxcosx(x4xdx11)2x44(x41)27解:dx解:dx41sinx4sinx1(1)1x41sin4xdsinxd(x1)44(x41)211114(x41)11d(x1)44(x41)221sin4xdsin2xd(x1)41arctan(sin2x)C1114(x41)ln(x1)C424(5)x2cos3xdx(6)2xxdx4x21x解:原式4xx2解:x2cos3xdxxdsin3x2dxdx34x2213x2sin3xxsin3xdx211(4x2)4d(4x2)dx4x2x232413x2sin3xxdcos3x21ln(4x2)x4dx4x29213x2sin3xxcos3xcos3xdx2211ln(4x)xdxx29921()2213x2sin3xxcos3x2sin3xC1ln(4x2)x2arctanxC2927221x(1x2)1(8)xx52(7)dxdx211解:原式11解:原式dxdx21d(x)x21x2(x1)222421x1arctanxCx1lnC221212xf'(sin2x)cos2x,f(0)1,求f(x)。2.設(shè)27f'(sin2x)cos2x1sin2x解:f(x)1xf(x)f(x)dx(1x)dxxx2C2又f(0)1,故C1,即f(x)xx212()[()]fxfx23*.設(shè)f(x)0且有二階連續(xù)導(dǎo)數(shù),求dx()[f(x)]2fx解:fx()[()]()()[()]fx2dxfxfxfx2dx()[f(x)]2fx[f(x)]2f(x))dxfx()(Cf(x)f(x)28第一章函數(shù)自測(cè)題一、填空題:x32.1x33.x121.二、解答題1(2)0,故有。sin21.解因?yàn)?3,所以。而6623(x)的圖形略2.解(1)yeu,u1。x(2)yeu,uv3,vsinx(3)yarcsinu,ulnv,vx13.證x,x(L,0),xx,我們有x,x(0,L),xx。因?yàn)樵趦?nèi)單調(diào)增加,2f(x)(0,L)1212121所以有f(x)f(x),12又因?yàn)閒(x)為定義在(L,L)上的奇函數(shù),上式可改寫(xiě)為f(x)f(x),即12f(x)f(x)12所以,f(x)在(L,0)內(nèi)單調(diào)增加。2x1x1x1x14.解(1)f(x1);(2)fxfx()(1)10xx。11x12x05.解由題意可列出函數(shù)關(guān)系如下:0saasksm4kak(sa)58006.解設(shè)批量為x件,每年需要進(jìn)貨次,由于均勻銷(xiāo)售,庫(kù)存量由x件均勻地減少到0件,平均庫(kù)存xx量為件。2一年的庫(kù)存費(fèi)為0.2x12x(1元).,2280048000訂貨費(fèi)為60x(元)。x綜上,我們有2948000p1.2x。x7.解設(shè)租金定為每天每套x(x200)元,由題意,每天可以租出60x200套客房,此時(shí),每天的收10入為x200y60x80x0.1x2。10當(dāng)x400元時(shí),收入最大,最大收入為16000元,此時(shí)空出20套客房。8.解設(shè)月利潤(rùn)函數(shù)為L(zhǎng)(x),由題意可列出函數(shù)關(guān)系如下:L(x)pxc(x)6x2240x(40x100)。9.解由題意可列出函數(shù)關(guān)系如下:250x0x600R(x)150000(250x6004000)(x-600)600x800x800196000250x0x600250x4000600x800196000x80010.解(1)需求函數(shù)的圖形為:1200011500110001050010000246810(2)R(p)pD(p)12000p200p2(3)銷(xiāo)售額的圖形如下,經(jīng)濟(jì)意義是:當(dāng)p30時(shí)銷(xiāo)售額最大。30175000150000125000100000750005000025000102030405011.解(1)由題意可列出函數(shù)關(guān)系如下:900x100100x1600x1600x100100p9075(2)利潤(rùn)函數(shù)為30x0x100x100L(x)(p60)x30xx100x1600x160010015xL(1000)21000(元)。(3)第二章極限與連續(xù)自測(cè)題一、填空題:1.填表limf(x)A000xxx0xx0limf(x)Ax0xx0xx0limf(x)A|0|xxxx0時(shí),總有|f(x)A|0對(duì)任意給定的0,總存使得當(dāng)limf(x)AxG0G0G0N0xG在limf(x)AxxGlimf(x)Ax||xGlimxA|xAnN|nnn2.a2,b83.a4,b24.a4,b85.6.17.一,可去8.31一,可去;二,無(wú)窮;一,可去。9.一,跳躍10.二,振蕩二、解答題1.證明對(duì)于任意給定的0,因?yàn)閘imua,所以總存在N0,使得當(dāng)nN時(shí),總有|ua|。nnn對(duì)數(shù)列u,當(dāng)nN時(shí),總有n|u||a||ua|nn所以,lim|u||a|。nn反過(guò)來(lái)未必成立,例如:u(1)n。n2.解(1)左極限f(00)1,右極限f(00)1f(00)。(00)(2)極限limf(x)不存在,因?yàn)閒x0(3)limf(x)1x11時(shí),3.解(1)當(dāng)xarctanx是有界函數(shù),所以為無(wú)窮小量,而xlimarctanx0。xxn1(2)lim(n1n)nlim。n1n2nn(3)limxx22112。x1(xh)3x3lim(3x23xhh2)3x2。(4)limh0hh0xn1lim(x1)(xxx1)n2。n1n2(5)limx1x21(x1)(x1)x1x21x43x20。(6)分子、分母同除以x,可lim得x4(x3)x23xx23x。lim(x3)220,根據(jù)無(wú)窮(7)limx3小量與無(wú)窮大量的關(guān)系可得,x3(8)分子、分母同除以x30,可得(21)10(32)20lim(2x1)10(3x2)20x210320limxx1。(5x1)53030(5)30xx3212n11lim(11)lim112。(9)利用等比數(shù)列的求和公式,可得11242nnn2111k(k1)kk1,所以(10)注意到111n111。limnlim1nn(n1)122313limx2x2limx21x1x1x31。1xx2limx1(11)先通分化簡(jiǎn),3x1x12n15n(2)nlim5n1(2)n151。525limn(12)分子、分母同除以,得nn525nsin3xlim3x3(13)當(dāng)x0,sin3x3x,sin5x5x,所以sin5xlimx05x5。x0x0,xsinxx2,1cos2x12(2x)2,所以(14)當(dāng)limx01cos2xlim2x22。xsinxx2x0xxxlim2xx。(15)當(dāng)nsin時(shí),,所以nlim2sinnn2222nnnnn1x12xe2。2xlim1x(16)limxxxarctan3xlim3x3(17)當(dāng)x0,arctan3x3x,sin2x2x,所以sin2xlimx02x2。x01sinx(1cos)12x3,所以(18)當(dāng)x0,arctanxx,tanxsinxcosx1x3tanxsinxlim21(arctanx)3x32。limx0x0111x2x1111limx22。2(19)當(dāng)x1coslim1cosx,x,故22x22xx2x2x5x25(20)當(dāng)x0,ln(12x)2x,sin5x5x,故limx0ln(12x)lim。sin5xx0(21)因?yàn)閘imxsin10(無(wú)窮小乘有界函數(shù)limsinsin10。),所以xxxx0x0(22)令tx,x,t,332tlimxxxxlimttttlim1。2222t2tt2txtt1(23)limex1。x2x1(24)limcosln1x1。x2cot2x122xx2cot2xe(25)lim1xx0lim1x2x0xaxa2axaxxe2a。lim1x(26)limx111(i1,2,,n),所以有4.證明(1)因?yàn)閚2nn2in21n111n。n2nn21n22n2nn211,故lim1。nn111lim由于limnn2nnn21n21n22n2nn(2)注意到下列不等式:x0,1xx11,x0,1x11x。xx1利用兩邊夾準(zhǔn)則,我們有l(wèi)imx1。xx0(3)容易得到關(guān)系式x2x(n1,2,),用數(shù)學(xué)歸納法可證x2。n1nn(1x)(2x)0,所以數(shù)列x是單調(diào)增加的有界數(shù)列,由單調(diào)有界數(shù)列必xx2xxnn2xxn1nnnnnn有極限可得,limx存在,設(shè)為a。所以我們有nnlimxlim2xn1nnn即a2a,解得a2,因此limx2nn113ax,1cosx12x,由題意知,x0時(shí),215.解當(dāng)x0時(shí),1ax2233x212x2,因此有1a1ax1與1cosx是等價(jià)無(wú)窮小,所以可得x0時(shí),23343a。2xxcxcxcxlimxlim1xec2ln2。,所以c6.解x|x|17.解(1)yf(x)lim1xx0|x|1。2n1x2nn||1xx(2)x1為函數(shù)的間斷點(diǎn),且為第一類(lèi)間斷點(diǎn)。事實(shí)上,f(10)1,f(10)1,f(10)1,f(10)1。8.解f(0)1,要使f(x)在x0處連續(xù),只需f(x)在x0處既右連續(xù)又左連續(xù)。因

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論