版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022學(xué)年內(nèi)蒙古自治區(qū)興安盟普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)
3.極限等于().A.A.e1/2B.eC.e2D.1
4.微分方程(y)2+(y)3+sinx=0的階數(shù)為
A.1B.2C.3D.4
5.
6.微分方程y''-7y'+12y=0的通解為()A.y=C1e3x+C2e-4x
B.y=C1e-3x+C2e4x
C.y=C1e3x+C2e4x
D.y=C1e-3x+C2e-4x
7.
8.
9.A.3B.2C.1D.1/2
10.
11.A.A.3yx3y-1
B.yx3y-1
C.x3ylnx
D.3x3ylnx
12.函數(shù)y=ex+e-x的單調(diào)增加區(qū)間是
A.(-∞,+∞)B.(-∞,0]C.(-1,1)D.[0,+∞)
13.
14.
15.
16.方程y+2y+y=0的通解為
A.c1+c2e-x
B.e-x(c1+C2x)
C.c1e-x
D.c1e-x+c2ex
17.設(shè)y=exsinx,則y'''=
A.cosx·ex
B.sinx·ex
C.2ex(cosx-sinx)
D.2ex(sinx-cosx)
18.下列等式中正確的是()。A.
B.
C.
D.
19.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
20.
二、填空題(20題)21.
22.23.
24.
25.
26.
27.設(shè)x2為f(x)的一個(gè)原函數(shù),則f(x)=_____
28.∫e-3xdx=__________。
29.設(shè)z=x2y+siny,=________。30.設(shè)z=x3y2,則=________。
31.
32.
33.設(shè)y=x2+e2,則dy=________
34.
35.
36.設(shè)f(x,y)=sin(xy2),則df(x,y)=______.
37.38.39.40.三、計(jì)算題(20題)41.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
42.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
43.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).44.45.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
46.求微分方程y"-4y'+4y=e-2x的通解.
47.求微分方程的通解.48.證明:49.
50.
51.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.52.53.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.54.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則55.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.56.
57.
58.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).59.60.求曲線在點(diǎn)(1,3)處的切線方程.四、解答題(10題)61.
62.
63.
64.
65.66.
67.將f(x)=e-2x展開(kāi)為x的冪級(jí)數(shù).
68.
69.70.五、高等數(shù)學(xué)(0題)71.求函數(shù)I(x)=
的極值。
六、解答題(0題)72.
參考答案
1.D
2.A本題考查的知識(shí)點(diǎn)為無(wú)窮級(jí)數(shù)的收斂性。
3.C本題考查的知識(shí)點(diǎn)為重要極限公式.
由于,可知應(yīng)選C.
4.B
5.A解析:
6.C因方程:y''-7y'+12y=0的特征方程為r2-7r+12=0,于是有特征根r1=3,r2=4,故微分方程的通解為:y=C1e3x+C2e4x
7.C
8.C
9.B,可知應(yīng)選B。
10.B解析:
11.D
12.Dy=ex+e-x,則y'=ex-e-x,當(dāng)x>0時(shí),y'>0,所以y在區(qū)間[0,+∞)上單調(diào)遞增.
13.B
14.C
15.D解析:
16.B
17.C本題考查了萊布尼茨公式的知識(shí)點(diǎn).
由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).
18.B
19.C
20.C
21.
解析:
22.
23.
24.
25.ex2
26.ee解析:27.由原函數(shù)的概念可知
28.-(1/3)e-3x+C29.由于z=x2y+siny,可知。30.由z=x3y2,得=2x3y,故dz=3x2y2dx+2x3ydy,。
31.
解析:
32.00解析:33.(2x+e2)dx
34.1
35.
36.y2cos(xy2)dx+2xycos(xy2)dydf(x,y)=cos(xy2)d(xy2)=cos(xy2)(y2dx+2xydy)=y2cos(xy2)dx+2xycos(xy2)dy也可先求出,而得出df(x,y).
37.
38.
本題考查的知識(shí)點(diǎn)為可分離變量方程的求解.
可分離變量方程求解的一般方法為:
(1)變量分離;
(2)兩端積分.
39.
40.
本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.
41.
42.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
43.
列表:
說(shuō)明
44.
45.
46.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
47.
48.
49.
則
50.
51.
52.53.由二重積分物理意義知
54.由等價(jià)無(wú)窮小量的定義可知55.函數(shù)的定義域?yàn)?/p>
注意
56.由一階線性微分方程通解公式有
57.
58.
59.
60.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
61.
62.
63.
64.
65.
66.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版圖書捐贈(zèng)與接受合同示范文本3篇
- 2025版小學(xué)校園廣播系統(tǒng)及音響設(shè)備采購(gòu)合同3篇
- 農(nóng)產(chǎn)品市場(chǎng)營(yíng)銷策略與實(shí)施考核試卷
- 2025年分銷合同的市場(chǎng)需求
- 2025年借殼上市協(xié)議法律條款
- 2025年園林綠化設(shè)計(jì)施工居間合同
- 2025年室內(nèi)裝修工程勘察協(xié)議
- 2025年合作哲學(xué)書籍出版合同
- 2025年加盟美甲美睫連鎖店合同
- 二零二五年度木枋行業(yè)人才培訓(xùn)與職業(yè)發(fā)展合同4篇
- 圖像識(shí)別領(lǐng)域自適應(yīng)技術(shù)-洞察分析
- 個(gè)體戶店鋪?zhàn)赓U合同
- 禮盒業(yè)務(wù)銷售方案
- 二十屆三中全會(huì)精神學(xué)習(xí)試題及答案(100題)
- 【奧運(yùn)會(huì)獎(jiǎng)牌榜預(yù)測(cè)建模實(shí)證探析12000字(論文)】
- 土力學(xué)與地基基礎(chǔ)(課件)
- 主要負(fù)責(zé)人重大隱患帶隊(duì)檢查表
- 魯濱遜漂流記人物形象分析
- 危險(xiǎn)廢物貯存?zhèn)}庫(kù)建設(shè)標(biāo)準(zhǔn)
- 多層工業(yè)廠房主體結(jié)構(gòu)施工方案鋼筋混凝土結(jié)構(gòu)
- 救生艇筏、救助艇基本知識(shí)課件
評(píng)論
0/150
提交評(píng)論