高等數(shù)學(xué)試題分析2010年_第1頁
高等數(shù)學(xué)試題分析2010年_第2頁
高等數(shù)學(xué)試題分析2010年_第3頁
高等數(shù)學(xué)試題分析2010年_第4頁
高等數(shù)學(xué)試題分析2010年_第5頁
已閱讀5頁,還剩542頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

—函數(shù)、極限與連 二一元函數(shù)微分 三一元函數(shù)積分 四微分方 五無窮級(jí) 六向量代數(shù)與空間解析幾 七多元函數(shù)微分 八多元函數(shù)積分 九復(fù)變函 附錄2005級(jí)期中、期末試 —設(shè)f(x) (x1),則f[f(x)] (x1且x1) 1 1 ff(x f (x1且f(x1)1x1f 1

(x1且x 1 1x,x 2x,x若f(x)1,x ,則f[f(x)]1,x

f[f(x)]1f(x),f(x) 1,f(x)f(x0x1,此時(shí)1f(x11x)22x,xf(x0x1ff(x1,x【注】此題也可通過引進(jìn)中間變量uf(xyf(u),uf(xx函數(shù)f(x) 的定義域是x0 xf的定義域是xxx0xx0xx0x0xx2x0fx0設(shè)lim(x2a)x8,則aln2 xx【解】利用重要極限lim(11)xe x xalim( )xlim[(1 )3a]xae3a x x從而aln2nanbnnanbnnanbnnanbn

max{a,b,c} dmax{abc}d

n3d,令n,注意到n31,由定理g(x)設(shè)f(x)x,x x1,x 則f(x)g(x)的間斷點(diǎn)為xg(x)0,x0 x,x1 f(xg(xf(xg(x x1,xf(x)g(x)2x1,0x 2x,xlim[f(x)g(x)]lim(2x1) lim[f(x)g(x)]lim(2x) x1f(xg(xx函數(shù)f(x)sinx的間斷點(diǎn)為0,類型為第一類 xf(xsinx,xf(x)

,xx0ff(x0)1,f(x01,x0f當(dāng)x0時(shí),無窮小量x2sinx是x的1階無窮小 sin【解】根據(jù)無窮小量階的比較的概念及重要極限 因?yàn)?/p>

sinxx的一階無窮小。(或填同sin2xe2ax 0f(x0

,xa,x

在(a2x0ffx0alimf(xlimf(x)limsin2xlime2ax12于是由22aa,得a2 11x1

,1x2 f 2,x0sinbx,0x1

x0處連2x(01)1x1【解】因?yàn)閘imsinbxb, lim2ax(1x11x1 b2a2a1,b2

f(x

1x1

1x,,xf(x)1,x0

12.函數(shù)f(x)1x的間斷點(diǎn)x0是第1類間斷點(diǎn)

1 0,xf(x) 1,x1x 0.x設(shè)f(x) ,x,則此函數(shù)x2 ]根據(jù)奇、偶函數(shù)及周期函數(shù)的定義及sinx的性質(zhì)立即可以否定掉(B)、(C)、sin(xsin(x故選(A)?;蛘哂蒮(x) x 1,x(,),可知f是(,)上的有界函數(shù)極限limx[ln(14ln(11 【解】利用已知極限 t 4ln(1 ln(11limx[ln(14)ln(11)] x x41 或者利用重要極限lim(11)xe x x15原式limx x

lim

x1)

) x1lnex(x1)f(x

,xx2

x1f(x

x

xx0f(xx1x1ffx1處的左極限與右極限,而直接討論極限limf(x。x2x2

(x1),lim(x1)0,所以lim(x1) 0(有界 x2量與無窮小量的乘積仍是無窮小量)f(1)10,x1f(x設(shè) atanxb(1cos 2,其中a,b,c,d為常數(shù),a2c20,則必x0cln(12x)d(1ex2(A)a (B)a (C)b (D)b ]atanxb1cos

a

x0cln(12x)d(1ex2a4c

ln(12x) d

f(xlimx1(nNfnx2n (B)存在間斷點(diǎn)xf(x

x1,xf(x)

0,x

f(xg(x在(f(x)f(x0,g(x (A)g[f(x)]必有間斷(C)f

必有間斷

f

g(x1,x

時(shí),[g(x)]2=1連續(xù)。所以(B)xx0(x(x都是無窮小((x0)xx0時(shí),下列表達(dá)式中2

(x)(x)x (D)(x)可取(xx(xx3易知選(A)

]f(xt

x2et(x2)axet(x2)

f(x在(a 【解】f(x x2,xf(x)32a,x22x2處的連續(xù)性知a529.

x2x

1(A)不存在但不為 (D)為

]

x2x

1ex1,

x2x

1ex10。所以選(A)1計(jì)算lim(sin3tcost)tt0

這時(shí)冪指函數(shù)u(t)v(t的極限問題,由于limu(t1,limv(tt t 【解】lim(sin3tcost)tlim[1(cost1sin3t)]cost1sin t tlimcost1sin

f(xarctan1x

sinx

【解】fx0,1,πl(wèi)imf(xx0flimf(xπsin1limf(xπsin1x1fππ π limf(xlim sin 1xπ x (π π 1設(shè)f(x) x,試求f(x)的連續(xù)區(qū)間與間斷點(diǎn),并 1e1 【解】fx0,x1;連續(xù)區(qū)間是(0)(0,11,因?yàn)閘imf(xx0ff(10)limf(x0f(10)limf(x1f(10)x1f 1求lim(x2ex2xsinx

原式lim(1x2(x1)sin

xex 2 2 limxe limxe1)xsinxx2ex1ex0xsin x(x2x(x2

ff無定義的點(diǎn)即為其間斷點(diǎn),再根據(jù)間斷點(diǎn)分因?yàn)閘imf(x) (x1)sin 1sin1,所以x1是可去間斷點(diǎn) x1x(x1)(x 因?yàn)閘imf(x)lim(x1)sin ,所以x1是第二類間斷點(diǎn) x1x(x1)(x(x1)sin (x1)sinx(x2因?yàn)閒(00) 1,fx(x2

1 f(0x(x2x(x2x0f 設(shè)x1, 證明數(shù)列{xnCauchy證明{xn收斂,再用遞推關(guān)系求出極限。1【證】x10,由遞推關(guān)系x 易知對(duì)一切nN,x11因

xn

11

n1xn11xn111而x2 x1,所以對(duì)一切n,xn1xn,即數(shù)列{xn}單調(diào)增加,又x112111xn2,則xn1 11 n1取極限,得l 。由此得到1

51(舍去負(fù)根l 5), 5lim5n kf(x)f(x0),其中常數(shù)k1 0xf(xf(x0)fxlimf(xf(x0 f(xf(x0(k1)x fxlimf(xf(xf(xf(x0(k1 limf(x)f(x)1f(x k由函數(shù)極限定義,對(duì) f(x),存在x的某個(gè)鄰域,使得在此鄰域內(nèi) f(x)f(x0) f(x0)f(x)f(x0)k 由此得到f(x)f(x) f(x) f(x) f(x)在x的某鄰域內(nèi)成立 f(x在[0,2af(0)f(2a,證明:存在一點(diǎn)[0af()f(a) f(f(a0f(xf(ax0在區(qū)間[0,a上有一實(shí)xF(xf(xf(ax在[0,ax,于是問題轉(zhuǎn)化為檢驗(yàn)F(x)在[0,a上是否滿足介值定理的條件。F(xf(xf(ax0xaFC[0,aF(0)f(0)f(a),F(xiàn)(a)f(a)f(2a)f(a)f于 F(0)F(a)[f(0)f(a)]2若上式最后的等號(hào)成立,則可取0或aF(0)F(a0,則由閉區(qū)間上連續(xù)函數(shù)的介值定理知,存在(0,aF(0,f()f(a設(shè)正數(shù)數(shù)列{x滿足條件limxn1l1,證明limx存在,并求limx

xn nxnnxnxxn0,根據(jù)單調(diào)有界原理,{xn收斂。設(shè)limxnaa0a0,limxn1an 與l1。故a0由于limxn1l1,所以對(duì)于1l0,NnNn 推 xn1l1l nN

xN1xN2·xn(1l)n xN 即0

x(1l)nN,令n, 定理得limx0 nf(x)

(x1),求f[f[f[f(x)]]] f(x

3x1,x,求f[f(x)] x,x已知f(11)x22x1,求f(sec2t) xf(x)

x1

,試作出函數(shù)yf(x)的草圖 如果limx2axb1,求a、b x2 求

nxnx nnx計(jì)算

x x(x2x(x2

(x1)sin

的連續(xù)區(qū)間與間斷點(diǎn),并間斷點(diǎn)的類型(要說明理由)x1x

sin

求lim( 4 )

1n1xn1x n2

當(dāng)x0時(shí)連續(xù) 設(shè)x0, 4(1xn)(n1,2,…),證明數(shù)列{x}收斂,并求limxn 4n

n二f(1)f(1設(shè) 1,則曲線yf(x)在點(diǎn)(1,f(1))處的切線斜率是2 yf(x在點(diǎn)(1,f(1f(1f(1)limf(1xf(1)(xt limf(1t)f(1)2limf(t)f(1t)t t f(xxa處可導(dǎo),則limnf(a1f(a12f(a

limn[f(a1)f(a1

f(a1)f f(a)f(a1)lim n(1t n

limf(at)f(a)limf(at)f(a)2ft t [(sinx)x](sinx)x(lnsinxxcotx) 1dylnsinxxcosx,整理即得y siny

f(cos(x21(sinx)xfdy2xf(cos(x21sin(x2(sinx)x(lnsinxxcotx) yf(x2y3fdy

2xf13y2f

xyx的函數(shù)。令ux2y3 dyd[f(u)]duf2x3y2dy dx dx 解xcos3

dyπ

2xf213y2f2曲線ysin3t在t4xy

2dydydtdt3sin2tcos

tan

dtdx 3cos2tsint由于當(dāng)tπ時(shí)曲線上對(duì)應(yīng)點(diǎn)的坐標(biāo)為(2 4

ttan πt4所以曲線在該點(diǎn)處的切線方程為xy 2 re在點(diǎn)(r,e2,)xye22xe π 【解】由極坐標(biāo)與直角坐標(biāo)的關(guān)系 ,得(e2,)的對(duì)應(yīng)點(diǎn)(x0,y0)(0,e2)ye 2π

esinesineecose2ye2xf(x)x(2x1)(3x2)·(50x49),則f(0)49! 各項(xiàng)均含因子xx0時(shí),除第一項(xiàng)外,其余各項(xiàng)均為0,所以f(0)(1)(2)·(49)xyxx23x

,則y(n)(1)n (x

(x

]。(93,上,期中 【解】先將y分解得y x23x (x1)(x

x xf(xxn(x1)ncosπx2f(n(1)4

2n! 2 ,視(x

為4中的v,由于(x1)n的nn!,不含(x1因子,其余各項(xiàng)均含(x1)x (1)1

n!

(e2xsinxcosx 1

)dxd(1e2x1sin2x2arctanxc dyysin(xd(x3

4xcos(x4) 34

443

4xcosx43另解

dsin(x4 xcos(x 的值等于 lim2xsin2xlim22cos2x2lim1cos2x2lim2sin2x 3 3 已知f(x)具有連續(xù)的二階導(dǎo)數(shù),且 f 2,則f(0)2x01cos【解】首先可知f(0)0,于是f(0)limf(x) f

1cosx x01cos 2 f limf(x)limf(x)fx01cos x0sin x0cosln(1xx0nTaylorPn(xx

3

.。n。2lnx 函數(shù)f(x) 的極大值x

ee【解】令f(x)12lnx0,得唯一駐點(diǎn)x 。又當(dāng)0x 時(shí),f(x)0eee時(shí) 所以極大值當(dāng)x f(x) f(e)2。(也可用f(e)0,知f(e)是e時(shí) 所以極大值ee

1 1f(x)(1

2 3x2x3x2(3 【解】因?yàn)閒 (1 (1x)3令f 0,得 0x0f(x0;當(dāng)0x1f(x0;當(dāng)1x3f(x0x3f(x0x3由于x1(1

alimf(x) 1,blim(f(x)ax) 2 x(1 x(1

x)yx2設(shè)f(x)xe2x,則函數(shù)f(n)(x)的極小值點(diǎn)為xn1 2【解】由 f(n1)(x)2n1xe2x(n1)2ne2x2n(2xn1)e2x0,xn22 f(n1)(x)0,xn220,xn xn1f(nx2函數(shù)yx2在區(qū)間(0,2)單調(diào)增加 y2x2xx22xln2x(2xln2)0x0,x

2。x0時(shí),y0;當(dāng)0x

時(shí),y0;當(dāng)x

時(shí),y0,故函數(shù)在區(qū)間(0,2y149x3x2x3的下凸區(qū)間為(1,上凸區(qū)間為(1, y1493121,所以拐點(diǎn)為(1,21)。yy(xyf(xyf(xf(x1d2y

f (1f【解】方程兩邊對(duì)x求導(dǎo)得:yf(1y),所以y f1f yf(1y)(1f)ff(1y)(1y)f(1f (1f

f。(1f1曲線ye2x上點(diǎn)(2,e)處的切線通過原點(diǎn)(0,0) 【解】不妨設(shè)曲線上的點(diǎn)為(x0y0,由題意該點(diǎn)的切線方程Yy2e2x0Xx y2x 又由 ,解得x ,ye

e2 若yarctan1ef2(cosx),其中f可導(dǎo),則dy 2sinxffef2(cosx)x

x2

f(x

1,xx

f(xx0處連續(xù),則 0,x2 xsin【解】因?yàn)閒(0)limf(x)f(0) x0,( 所 f(x)

, 0,xf(xx0處連續(xù),必有l(wèi)imf(x)

f(0)0,故有2fF(xf(x)(1xf(0)0F(xx0 ]F(xx0g(x)xf(xx0

f(0),g(0)f(x) f(x)

ff(x)

f(0)f(00f

f(x

f(x)

f(x

f(x)

f(xf(x

f(x)f(x) ]f(xxf(x1,由此可得(B),(D)f(xx2f(x2x,

f(x

[axf(xLagrangef(xf(af()(xa)(ax,由此得到f(xf(a)xa,即f(x)f(axax,便得結(jié)論。設(shè)f在[a,b上連續(xù),在(ab內(nèi)可導(dǎo),則(Ⅰ)在(ab內(nèi)f(x)0與(Ⅱ)在[a,bf(x)f(a 【解】f(x0x(a,bf(x在(ab內(nèi)恒為常數(shù)kfxaf(a

f(xkf(bkf在[a,bf在[a,b存在(abf(bf(af()(b存在(abf(存在(abf(xf(x[a存在(a,b),使f(x)f(),x[a, 【解】連續(xù)函數(shù)未必可導(dǎo),故(A)、(B)不真。閉區(qū)間[a,b上連續(xù)函數(shù)能在[a,b上取得若ab0,f(x1,則在(abf(bf(af()(ba成立的x至少有一 (D)是否存在與a、b有 1,x(a,0)∪(0,

f(x)

,所以對(duì)x(a,bx0,f(x0 不存在x

f(b)f

1 f()(ba)0,(a,b),0。但是 ab b

fgNx?0g(x0limf(x0limg(x,則 limf(x)A與(Ⅱ)limf(x)A(A為常數(shù))xx0 xx0 f(ah)f(a)f設(shè)f(x)在xa處二階可導(dǎo),則 等 (A) (B)1f2

(C)f f(ah)f(a)f f(a 【解】 f f limf(ahf(a)(L’Hospital法則 1f(a(二階可導(dǎo)定義2limf(xf(x0)2xf0x (xx (A)可導(dǎo)且f(x0) 0xf(xf(x0)0f(xf(x0 (xx f(xx1)x22x3 f(xx22x3x1x3的兩個(gè)不可導(dǎo)x1x3中;又(x1)x1x11個(gè)。已知函數(shù)yf(x)對(duì)一切xxf(x2xf(x)]4ex1x0(x00)f(xx0f(x(x0f(x0yf(xx0f(x(x0f(x0yf(x ex0【解】x0是f(x)的駐點(diǎn),所以f(x0)0,將xx0代入關(guān)系式,得f(x0 x0時(shí),ex01f(x0x0時(shí),ex01f(x0xf x00 f(x)f ex ex limf(x)lim2[f(x)] 1 x0 f(xg(x在[a,b上可導(dǎo),且f(x)g(x)0,又f(x)g(x)f(x)g(x)axbf(x)g(x)f (B)f(x)g(x)f(C)f(x)f (D)g(x) f f

F(xf(xx[abF(x

f(x)g(xf(x)g(x)0Fg2在[a,bF(xF(a,故選(C) ysinx x

直線x0為曲線的漸近 (B)直線y

π2(C)直線yπ為曲線的漸近 2

【解】顯然,limy ,所以x0不是曲線的漸近線;又因limy yπ2設(shè)常數(shù)k0f(xlnx

xk在(0,e f(x110 xe。當(dāng)0xef(x0f(x;當(dāng)exf(x0,f(x,xe是函數(shù)f的最大值點(diǎn),fmaxf(e)k0。其次,因

f(x),

f(x,所以分別存在x1(ex2(0,e)f(x10,f(x20ff在區(qū)間(x2e、(ex1f(x),xF(x

2,x

f(xf(0)1x0F(x (C)第二類間斷 (D)可去間斷 f(xf(0)1f(0)0limF(x)limf(x)limf(x)f(0)f(0)1F f已知f(x)在x0的某個(gè)鄰域內(nèi)連續(xù),且 2,則在x0處fx0 (B)可導(dǎo)且f(0) (D)取得極小 f(x2x2,則滿足已知條件,但(A)、(B)、(C)f0)0x0f(xx2f(xf(0),故選(D)x0etanxexxn是同階無窮小量,則n etanx【解】要使極限

lim(etanxx

limetanxx

lim1cos2

f(x

aexx fx0bln(1x),x

a1,ba1,ba2,b (D)a2,b fx0f(00)f(0)ab,f(0)a1。所以ab1,故選(B)

已知曲線yAx(A0)與y 在點(diǎn)P(x,y)有公共切線,則常數(shù)A與點(diǎn)1,(e2e

1e

1

1,(e2 ]xxA2 1xxA2解xe2A1P的坐標(biāo)為(e21)exyy(x由參數(shù)方程ybtt2,(0tba0,b0)y(x在(0,ab3y(x在(0,ab3y(x在(0,ab3曲線y(x)在(0,ab3)內(nèi)向上 b【解】由參數(shù)方程求導(dǎo) ,在t(0,b)時(shí)符號(hào)不定,故(A)、(B)不對(duì)。 d2y2(bt)0,0tb,所以選(D)

f(x3x2

6x3x2,x 66x,x 6,x f(x6x3x2x0f(x66xx0f(x6,x0f(x連續(xù),且limex1f(x)3 (A)f(0)1,f(0)2(C)f(0)1,f(0)2

(B)f(0)1,f(0)2(D)f(0)1,f(0)2 ]lim[ex1f(x)]limex1xf(x)limexf(x)xf

f(0) exf(x) (x)1lim[exf(x)]1limf(x) lim f(0)5,故選(A)2

2 2 2xcosxex

,xf(x)

a,x問當(dāng)af(xx0在(1)f(xx0f(x(97,上,期中(1)f(xx0alimf(x)alimf(x) limcosxxsinxex(L’Hospital法則lim2sinxxcosxex 1(2)當(dāng)a 2f(0)

f(x)f

lim2xcosx2exx2

x

lim2cosx2xsinx2ex

2sinxxcosxex

lim lim3cosxxsinx

(x)x2sinxxcosxxex2exx2sinxxcosxxex2ex ,xf(x)

2 x 設(shè)f(x) ,討論f(x)的可導(dǎo)性,并在可導(dǎo)點(diǎn)處求f(x)t2x2

f(x)

0,x t2x 2由求導(dǎo)法則,當(dāng)x0時(shí),f(x)0;當(dāng)x0時(shí),f(x) (2x2 而當(dāng)x0時(shí),因?yàn)閒(0)lim000,f(0)lim2 1f f x0x x0

x f(x)

0,x不可導(dǎo),x02x2xxt2yy(x是由方程組

tey

t

yy(t y 【解】方程tey兩邊對(duì)t求導(dǎo),得ete 1xt22tdx2t2dydydt dt 2(1y)(td2y

d(dtdx

eydy(t1)(1y)ey[(1y)(t1)dy yt

t

。t

4(t1)3(11cot2求極限 x0這時(shí)"型未定式,可化為0"L’Hospital0sinxsinxxcos【解】原式lim (sinx~x,x

x2sin2lim(sinxxcosx)(sinxxcos lim(sinxcosx)limxsinx2limsinx1sin1sinx1

3

x2xln(1原式x0(1sinx1x)[x2xln(1

1 1

1cos2x0x2xln(1 2x02xln(1x) 11 1cos 1 sin2x0x2x2(1x)ln(1 2x04xln(11lim cosx 12x041 1

Taylor原式1 xsin2x0x2xln(1x)1x3o(x3)1lim 2x01x3o(x3 2

1 x[x1x3o(x3 2x0x2x[x1x2o(x22 lim(ax2bxcsecx)由此得c1。又要使多項(xiàng)式與函數(shù)secxx2ax2bx1sec lim2axbsecxtanx 由此得b0,因 lim2axsecxtanxa a1P(x1x21 求函數(shù)f(x)1ln(1x2) 0)的極值及曲線yf(x)向下凸的區(qū)間2【解】f(x)

arctan(x1x2

1x(91 7 1 上)(x)0,得唯1x1f(x0;當(dāng)1x0f(x0x1f(x21ln2 12x 2小值 。又因

,令f 0,得下凸區(qū)間( 2,0)5設(shè)曲線方程為yxx 55【解】函數(shù)yxx 的導(dǎo)數(shù)為dyxx(1lnx555

1,法線斜率為22x1y3y32(x1),即2xy已知f(sin2x)cos2xtan2x(0x1),求f(x) f(x【解】考慮到cos2xtan2x12

sin2 1sin2xf(x)12x 1

2x 1xf(xx2ln(1xC(0x1)設(shè)函數(shù)yy(x)由方程2y32y22xyx21所確定,試求它的駐點(diǎn),并判別它 x

3y22yy0,得yx0,代入原方程,有2x32x22x2x21,即(2x2x1)(x1)0x1,此時(shí)2y32y22y20,即y21y1)0y(1)1y

10x12由Lagrange中值定理知:ex1xex,求lim 【解】由等式 ex xexex

limex1 limex(x1)1limex(x1)1limex(x1)ex

x(ex

設(shè)常數(shù)a0,證明:x0時(shí),(ax)aaax F(xaln(axaxlna(x0)F(xC[0,F(x) lnaa(1lna)xlnaax axx0,aeF(x0F(x在(0F(0)0,可x0F(x)F(0aln(axaxlna0,由此命題獲證。ln(a當(dāng)然,這里也可作輔助函數(shù)G(x) af(x在[af(xk0,f(a0f(x0在[a 【證】因?yàn)閒(x)0,所以f(x)在[a,)內(nèi)單調(diào)增,因此f(x)0在[a,)內(nèi)最多 ,(a,x),使f(x)f(a)f()(xa)f(a)k(x

f(xx1af(x10f(a0f(x0在(ax1f(xxf(x0,即[xf(x)]0在區(qū)間(0,1)內(nèi)有根。這只要函數(shù)xf(xRolle定理的條件。設(shè)a、b、cf(xabcf(x2f(x0在(acf(x3f(x2f(x0在(ac(95,上,期中(1)F(xe2xf(xF(xF(aF(b)F(c0F分別在[ab],[bcRolle定理,則1(ab),2(bcF(10F(20 e21[f()2f()]0,e22[f(2)2f(2)] 因e210,e220,所 f()2f()0,f()2f() f(x2f(x0在(ac內(nèi)至少存在兩個(gè)相異的實(shí)根,于是(1) 上對(duì)G(xRolle(1,2ac),使G(0設(shè)函數(shù)f(x)在[a,b]上可導(dǎo),并且f(a)f(b),f(b)2,證明:在(a,b)內(nèi)存在一點(diǎn)f()0。 f(b0c(abf(c)f(b)f由連續(xù)函數(shù)介值定理,存在(acf(f(bf(x在[bRolle設(shè)f(x)在[1,1]上連續(xù),在(1,1)內(nèi)可導(dǎo),且f(1)f(1)0,f(0)1。證明:對(duì)(1,1)內(nèi)的任何,存在(1,1),使f()。 f(x0,即f(xx]0在(1,1)內(nèi)f(x在[a,bf(af(b0,又存在c(abf(c0證明:存在(a,b),使得f()0 只要證明存在兩點(diǎn)1,2a12bf(2f(1f(x在[a,bf在[ac],[c,bLagrange f(1)f(c)f(a)c

a1f(2)f(b)f(c)b

c2f(x在[1,2上用微分中值定理,存在(1,2abf()f(2)f(1)2設(shè)f(x)在[0,c]上可導(dǎo),f(0)0,f(x)單調(diào)下降證明對(duì)于0ababc,恒有f(ab)f(a)f(b)。 【分析】f(abf(af(bf(abf(bf(x

f(af(0)在區(qū)間[0,a和[babf(xLagrangef(a)f(0)f f(ab)f(b)f(2 b2af(f(a,f(f(abf(b0aba f(xf(f

f(a)

f(abf(b)a0 f(ab)f(a)ff(abf(af(bf(0)將aF(xf(axf(af(x0xbFC[0,bF(0)0F(xf(axf(x0F(xF(x00xbxbF(b0f(abf(af(bf(x在(abf(3xf(xf(x0(axxb 存在(a,b),使f(3)()0

【證】f(x0,x(a,bf(xf(x10f0f(x10f(x10f(x)0, f(x)limf(x)f(x1)limf(x) x xx1x 由極限的保號(hào)性知存在x(a,x1),使得f(x)0,這與f0 。所以f(x1)0。同理有f(x2)0。又在[x1x2f(xRollex0(x1x2f(x00f(x分別在f(x在[1,2Rolle定理,存在(1,2)abf(30。設(shè)在(f(x0,又limf(x)1f(x (x) f(x存在,且limf(x)1,所以limf(xf(0)0 f(0)limf(x)f(0) f(xf(0)xf(0)1x2f()x1x2f(x(0x之間 f(x0yf(x向下凸,曲線上任一點(diǎn)的切線在曲線的下方;又曲線在點(diǎn)(0,0)的切線為yx,因此f(x)x,(x)。f(x連續(xù)且limf(x)1f(0)0f(0)1。令F(xf(xx F(x)f(x)1,F(x)f(x)F(xF(x0F(0)0F(x只有一個(gè)x0。F(0)0F(x的最小值。因此對(duì)x(F(x0,f(xxf(x在[a,b上連續(xù),在(ab內(nèi)二階可導(dǎo),且f(a)f(c)f(b0(1)至少存在兩個(gè)不同的點(diǎn)1,2(abf(if(i0i1,2(2)存在(a,b),使f()f() (1)F(xexf(x,分別在[ac與[cbRolle(2)令G(xexf(xf(x在[1,2Rolle(1,2abG(0f(f(證明不等式:當(dāng)x1時(shí),(1x)ln(1x)1x2 f(x1x21xln(1xf(x是[1,f(x)2x1ln(1x)2x1xx10,xf(10,f(xf(10,所以(1xln(1x1x2試比較數(shù)πe與eπ的大小 【分析】原命題等價(jià)于比較數(shù)elnπ與π的大小。將數(shù)elnππ看成某一函數(shù)在自變量【解】f(xelnxx(xef(e0f(xe10(xexf(xf(xxef(xf(e0。于是elnxx(xexπelnππ,從而πeeπx設(shè)x0,求滿足不等式lnx xxx

ln

在(0,x3f(xlnx(x0)f(x2lnxf0xe2x32x又當(dāng)0xe2時(shí),f(x)0;當(dāng)e2x 時(shí),f(x)0,所以xe2是f(x)的Af(e22e V(t)1π[1042(10h)r2]160π1πr2(10 r10hr2(10h,代入上式得V(t(16h8h24

dVπ(1616h4h2)

將 5,h dt

5(m分) q售出的產(chǎn)品數(shù)q與產(chǎn)品單價(jià)p的關(guān)系為p490.2 q3設(shè)利潤(rùn)函數(shù)為Q(q,則Q(qpq13q400036q0.2q24000令Q(q0q14400。注意到Q(q

q20q14400 p492425p25團(tuán)隊(duì)每人減1.5元。問多少人組隊(duì),公司收入最大? xf(xf(x) 40x,x [401.5(x15)]x, f(x) 40x,x62.5x1.5x2,x 40,x于 f(x)不存在,x62.53x,xf(x0x62.520.8。根據(jù)實(shí)際情況(人數(shù)是正整數(shù))3fmaxmax{f(15),f(20),f(21)}作半徑為r的球的外切正圓錐,問此圓錐的高h(yuǎn)為何值時(shí),其體積V最小,并求出最 R2 R 得R2 rR2 h h V1πR2h1

(h從而 h2

h0,得唯一駐點(diǎn)h (h h4r時(shí),V取最小值,且

V(4r8πr33設(shè)f(x)在(0,)上可導(dǎo),且f(x)x2f(x)0,試在由yf(x)的切線與兩坐 yf(x上點(diǎn)(xy的切線方程為Yyf(xXxxf1xf1xf(x) f

1[xf(x)y]2yxf(x)2 f(x)yf(xx2f(xS1(x1)2f(x)(x2于 S(x)(x1)f(x)1(x1)2f(x)2

f(x)(x1)(2x1)(x1)S(x0x1,又當(dāng)0x1S(x0x1S(x0水平地面移動(dòng),求當(dāng)球離地面3m高時(shí)移動(dòng)的速度(空氣阻力忽略不計(jì))。 x 5g時(shí)間t求導(dǎo)得dx dy。當(dāng)y3時(shí),有1gt2532。解得tg (5y)2 dygt

22g (g2)2g

g(m/t

9.在橢圓 x2y21(a9.在橢圓

P(x,

,B(0,2b)構(gòu)成的三角形APB的面積最小 ,AB

1,即bxay2abP(xya2a2

SAPb

bxay2ab2abbxay(0xa,0yhha22取目標(biāo)函數(shù)f(x)2abbxay2abbx (0xa)令f(x)a222點(diǎn)x a,由f(0)f(a)ab,f(x)(2 2)ab知f(x)最小故點(diǎn)(2

b

510.A、B兩廠在直河岸同側(cè),A沿河岸,B離岸4km,A、B相距5km。今在河岸邊建一水廠C,從水廠到B廠的每千米水管材料費(fèi)為到A廠的倍,問C應(yīng)選在何處,才能使 5 Qx 542(3x)2,0x 16(3

dx1A廠1kmB廠25kmx確定a、b,使當(dāng)x0時(shí),f(x)arctanx 1求函數(shù)y2ln(ex)的單調(diào)區(qū)間及其圖形的下凸區(qū)間 x設(shè)f(x)在[a,)上二次可導(dǎo),且f(a)0,f(a)0,對(duì)任意xa有f(x)0,則f(x)0在(a,)內(nèi)有且僅有一個(gè)實(shí)根。 f(x)1,證明:在(0,1)內(nèi)有且僅有一個(gè)x,使f(x)x f(x在[0,1f(1)0f(xx1x0)0值3,證明存在一點(diǎn)(0,1),使f()24 ( 性及可導(dǎo)性 試確定方程exax2(a0)的根的個(gè)數(shù),并每一根所在的范圍f(x在[0,1f(1)f(0),試證:至少存在一個(gè)(0,1)使f()f() 1

(0)

0

f(x)

,又

fx

0,求

fx

x

設(shè)f(x) ,求 (x) x2在曲線y1x2(0x1)上求一點(diǎn)P(x0,y0),使過該點(diǎn)的切線與兩坐標(biāo)軸所圍三 設(shè)在[1f(x0f(1)2,f(1)3,證明在(1,f(x0且僅有一個(gè)實(shí)根 2秒末受到擾動(dòng)的水面面積的增大率為多少 f在[0,1]上連續(xù),在(0,1)f(1)0,證明:至少存在一點(diǎn)(0,1使3f()f()0 x2sin 計(jì)算lim

x(3

x xx0ln(1 2 ex,x f(xax2bxcx

f(0)a、b、cf(x在[a,b上連續(xù),在(abab0,,(ab

a2ab

f

三2x2 dxarctanx C x(x

2x2

x2x2 x2(x21)

x2(x2

x21x2若xf(x)dxarcsinxC,則

1dx1f

x2 C。(96,上,期末1f11 xf(x1f

dx 1x2dx1 1x2d(1x2)1(1x2)32Cf(x) dacost2dtcosx2 dx 0xsint2dt0sint2dt2x2sinx4 dx 導(dǎo) 0xsint2dtd

0sint2dt)0sint2dt2x2sindx

aa(aa

a2x2dtπa3 2axa2x2dt0,故原式2a

a2x2dt【解】由奇(偶)函數(shù)定積分的性質(zhì)知

xasint即可算出(或利用定積分的幾何意義立即可得f(x在abf(af(b0,bf(x)dx1bxf(x)dx1bxf(x)dxbxdf(x)xf(x)b

bf(x)dx

f(x)x12tdt在區(qū)間1yf(x在區(qū)間21t 1t 向下凸 1f(x)12x f(x)(x122f(x),f(xππ若et2dt ,則x2ex2dx ππ 【解】x2ex2dx2x2ex2dxx2

5 5 x(x2 51 51【解】因?yàn)?/p>

dx

)dx

2

sin3定積分 1

44sin3

)dx

x 4444

1x6 x2sin322sin2cos2d322(sin2sin4321.π301π ..2 422T若車以速度v(t)273t2(米/秒)沿直線作運(yùn)動(dòng),則從時(shí)刻t0汽車停下所行駛的距離為54米。 Ts0v(t)dt其中T為汽車從時(shí)刻t0的時(shí)間.v(t0,得t3,即T3,s3(273t2dt540f(x)

1x1ln(1t)dtg(xexx1x0f(xg(x 【解】因

f

ln(1 ln(1

(用洛必塔法則x0 exx21(ln1x)21 ex1ln(1

(化簡(jiǎn)

lim (ex1~x,x0) f(xsinx(et21)dtg(x)xsinxx0f(xg(x0高階無窮

sin2 sin2limf(x)lim limcosx 1)lim x0 1cos x01cos

2sinxcosxesin2sin方程xt61dt et2dt0在區(qū)間(0,+∞)內(nèi)的實(shí)根個(gè)數(shù) 【解】令f(x)xt61dt et2dt,因?yàn)楫?dāng)x>0時(shí) x6f'(x) sinx6ecos2

x6ecosx6 f(0)f()(1etdt)( t61dt) fx在(0,π2x x

1t4dtcosx0在區(qū)間(0,+∞) x【解】令F(x) x

]1t4dtcosxF(0)1limF(xFx1在(0,+∞)內(nèi)至少有一個(gè)實(shí)根。又因?yàn)?

F(x) 1sin1雙紐線(x2y22x2y2π24cos0

44cos0 1 20

2

40

] 441r2d24r2d24cos0 ln 2 (B) 2 (C) 9 xln 0sin

11,所以積分(A)

xln2 lnx3xlimx2x

lnx

lnx

所以由極限判別法(k0,p

292 lim3x192 181故由極限判別法(k ,p1<1)知積分(C)也收斂,而limx2? 1812判別法(k1,p2>1)知積分(D)發(fā)散 sin2計(jì)算x41x2 1x2 【解】因 x4(1x2 x2(1x2 1所 原式

(11

)dx

1arctanx

1

sinxdx 1sinx【解】法一令 u,則sinxx2

,dx

原式 1u2

du (u 1u2 2u 22arctanuC

xx1

12

sinxdxsinx(1sinx)dx(sinxtan21sin

cos2

cos2d(cosx)(sec2x1)dx

tanxxcos2 求sin2x2sin 【解】原式

2sinx(cosx法一因被積函數(shù)關(guān)于sinx是奇函數(shù),所以可令cosxt原式 1

2(1t2)(t 2(t1)2(t 24(t 2(t 4(t 18

1t

C1ln1cosx 1cos

原式1 1

x

11cot2 2 x x

4sin2x?cot cot cos x

1d(cot2)1cotxd(cotx)1lncot

1cot2x cot2求arctanx

【解】原式

1

xarctanxd(1)arctanxd(arctanx1arctanx1 dx1arctan2x x1 =1arctanx1arctan2x(1 x 1x21arctanx1arctan2xlnx1ln(1x2)C 當(dāng)然,此題也可令arctanxt計(jì)算

【解x1arccosxdx x1

)x

(xsinarccosxd arccosxlncsccotC 1x2arccosx 1x2計(jì)算sinxcos3 sec2【解原式sinxcosx

d(tantantan2x1d(tanx)1tan2xlntanx法二原式 sin

tan

(cosxsin2xcos3 (1cos2x)cos3 (11 11

1 112

xlntanxC

1e2x 1e2【解】 u,即x1ln(11e223原式2(13

u2du

du u u303π2xsin計(jì)算4 01cos

1 01 π【解】因 原式4 dxπ

sin2xdxI101cos 01cosπ π

ππsinxI1

4 dx dxπ

4xdtanx=xtanx0

4 01cos 0cos 0cos2π 4πd(cos

4 I22

4 01cos

所 原式IIπl(wèi)n 2計(jì)算2

x2xln(x422 4

222原式2

(分母有理化)20(2

4x2)dx=2(41π4)2(4422 4

44

1sin

【解

44

44

1sincos2 (sec2xsecxtanx)dx(tanxsec

π4 法二x

dxdt

44

1sin

4dx4

4dt4

1sin

而1π

4

1sin

1sinx)dxπcos2xdxtanx x令

t,則

1dx1

24 4

1sin

o1 2

1 dt to2( o(14tan

1

1

1 2tanπ2計(jì)算 011ex

1

1tan2800

4【解

ex

dx

(1 )dxex

ln11【注】最后一個(gè)積分不能寫成 dx0ex1dxx2判斷反常積分arctanxdx的斂散性 x2 【解】因 arctanxdx2arctanxdx arctanxdxIx2x2x2x2x2

1

1x=1Ilim(x1)2

arctanx (k π,p1xx244 xx244xx2Ilimx2arctanxπkπp2>1)xx2 x2arctanxx2 (2x(2x2)11

【解x1xsintπ20原式 2dt2π20原式 2dt2d(cosπππ02sin 01cos 法二原式=lim (xsint) (2x2)10(2x2)1

1cos2limarctan(cost)計(jì)算

ln

0(1【解x0 原式lim1lnxdxlimlnx1 0(1 0

1x x1 limln

x(1x(1

1ln01

lnxdxxlnxln(1x)(1 1 x 所 原 ln(1 ln 2 -1x2若f(x)

0x1,求

f(t1)dt 1【解】令t1x 02 10f(t1)dt1f(x)dx1f(x)dx0f(x)dx1 dx01x2=1(1e2)1

1(1e2) 計(jì)算3πf(x)dxf(xf(xf(xπ)cosxf(xx2x[0,ππf(x)f(xπ)cos所 f(xπ)f(x)cos于 f(x2π)f(xπ)cosxf 即f(x)以2π為周期,所以 f(x)dx f(x)dx0f(x)dx f(x)dxI1I2π 1首 I xdx I2xtπI20f(tπ)dt0f(tcostdt所 3πf(x)dx2 f π, f(x)f π, f(x)此題也可先求 上的表達(dá) x2π,設(shè)函數(shù)f(x)可導(dǎo),其反函數(shù)為g(x),f(0) ,并且f(x)與g(x)滿足關(guān)系4f g(t)dt0etet,求f(1) f 【解】對(duì) g(t)dt0etet兩邊求導(dǎo),得g[f(x)]f(x)exex xf(x) ,或f(x) exe exe1f(x)dx 0exe x f(1)f(0)

0e2x

dx

arctan4

arctanearctan

x(xt)ln(3t20sin2

xxln(3t2)dtxtln(3t2【解】原式

xln(3t2)dtxln(3x2)xln(3x20 lim limln(3x)ln x

計(jì)算lim0(arcsint

x(ex0x【解lim

(arcsintt)dt(ex1~x,x x? 1111

111111

fx在(1,1)x0f(0)0f(0)1,I

xtf(x2t20

0xx 1【解xtu,則0tf(xt)dt20f21x2f2于 I

xf

fx2f f(0)

4 xx

0sintdt

【分析】這極限是型不定式,不能用洛必塔法則來解決.【解】令nxnπxn1)π sintdtsintdt sint 由于0sintdtk0sintdt2k(k1,2,),且當(dāng)x時(shí)n,故 xlim0sintdtx sin sin sin設(shè)x n n nsinπ,求limx。 n n n n x 1 【解】因 n1sinnxnnsin 1 π 1 limn1sinnlimnsinnπl(wèi)imnsinnπ0sinxdx limxx 已知g(x) xtf(xt)dt,求g(x) 0【解xtu g(x)0(xu)f(u)dux(xu)f(u)duxxf(u)dux g(x)xf(u)duxf(x)xf(x)xf(u)duf(x)f 13f(x在0,1上連續(xù),在(0,1)內(nèi)可導(dǎo),且32f(x)dx3

f(0證明在(0,1)在一點(diǎn)c,使f(c)0 【證

f(x)dx1f()(

13 13bf(x在ab上連續(xù),且af(x)dx0,證明在(ab內(nèi)存在baf(x)dxf( x【分析g(xaf(t)dtg(g'(g(xg'(x0x)g(x)h(x)'g(x)h'(x)gh'(xh(x0h(xex【證F(xexxf(t)dtF(aF(b0f(x在ab上連續(xù),在(aa內(nèi)可導(dǎo),所以由羅爾定理(abF'(0ef(t)dtef()0因?yàn)閑0f(x在0,1上連續(xù),證明存在(0,1),使1f(x)dxf(。(補(bǔ)充題1【分析】欲證命題成立,就要證方程xf(t)dtxf(x0在(0,1)1 ' 111g(1),由羅爾定理可知,存在(0,1g'(0,即

f(x)dxf(f(x在abf(x0bf(x)dxbafab 【證f(x)f(ab)f(ab)(xab)f()(xab 其中xabf''(x0f(xfabfab)(xa bf(x)dx(ba)f(ab f(x在0,1f(x0證明1f(xn)dxf(1n n 完全類似,于是推想用泰勒來證明.【證f(u)f(1)f'(1)(u 1)f''()(u 1n n n n其中介于u與 之間??紤]f(x)0,有f(u)f(1)f(1)(u 1n n n n1)f1)(xn11)f1)(xn1nnn 1f(xn)dxf( nf(x在abf''(x0,證明bf(x)dxba)f(af(b) 【證x(abf(a)f(x)f'(x)(ax)1f''()(ax)2,(a

f(b)f(x)f'(x)(bx)

f''()(bx)2,(x 由于f''(x)0(axb), f(a)f(b)2f(x)f'(x)(ab (ba)f(a)f(b)2bf(x)dxbf'(x)(ab a4bf(x)dx(ba)f(a)fa整理便得所要f(x0f(x在ab上單調(diào)增.x(a,bf(x)f(a)f(b)fx b f(x)bxf(a)xaf(b) (axb)ba bab由于等號(hào)不恒成立,故積分便得b

f(x)dx(b

f(a)f。 x法三F(xx

f(t)dt

x

f(af(x)xabF(a0F(x f(x在02πf(x0n2πf(xsinnxdx2f(2πf 1【分析n2πf(xsinxdx12πf(x)d(cosnx)(分部積分 nf(x)cosf(x)cosnx2π2πf(x)cosnxdx(f(x)1f(2πf(0)2πf(x)dx 2f(2π)fnf(x在0,1上可微,且f(x)M,f(0)f(1)01f(x)dx1M f(x)

f(x)f(0)

f()xMx(0< f(x)f(x)f(1)M(1 1f(x)dx

f(x)dx2Mxdx1M(1x)dx 1f(x)dx 11此題也可先將積分f(x寫為f(x)d(x1)11

xx2f(t)dt3xt2f 【證g(x)xx2f(t)dt3xt2f(t)dtg(x在0, g(x)2xxf(t)dt2x2f(x)2xxf(t)f(x)dt g(x在0,x0g(xg(0)0f(x在ab上有定義,對(duì)xyab,有f(xfy)xyaf(x)dxbaf(x)1(b b【證xyab,有可知f在ab上連續(xù),所以

f(x)f(y)x bf(x)dx(ba)f(x)

bf(t)f(x)dt

txdx

(t a

1(bx)2(xa)21(bx)(xa)21(b af(x為(f(xf(xF(xaxtf(t)dtaa0xaF(x為凸函數(shù)(yF(x向下凸x0為F(x)的最小值點(diǎn) 外,然后再進(jìn)行計(jì)算

【證】(1)F(xaxx

f(t)dta(xt)f(t)dtx(tx)f xaf(t)dtatf(t)dtxtf(t)dtxxf 所以有F(x) xf(t)dt a(t)dtaf(t)dt x(t)dt2xf(t)dt(f為偶函數(shù) F(x)2f(x)x0F(x12.f12.f(x在(g(x)x(x2tf(t)dt若f單調(diào)增,則g單調(diào)減 【證】(1)g(x) x(x2t)f(t)dt(令tu x(x2uf(u)du(f為奇函數(shù)x(x(x2u)f(u)du (2)g(x)

xf(t)dt2xtf(t)dt

xf(t)dtxf(x)

xf(t)f x0f(tf(x0g(x0當(dāng)x0時(shí),有g(shù)(x) 0f(x)f(t)dt0f(x在0,a(a0)上連續(xù),且af(x)dx0,則存在一點(diǎn)(0,af()f(a) 【證】令xat,則af(x)dx 0f(at)dtaf(a g(x) g(x) xf(t)dt xf(af(x)[aaf(0)0

[aa

f

() 【證】f(xf(0)f'(0)x1f''()x2f'(0)x1f''()x2,η0x

f(x)dxaf'(o)x1f''()x2dx1af''( a 2f"C,f"在aa上存在最大值M,最小值m,即mf"(xMxamx2f"()x2aa

x2dxf"()x2dxM

2a3maf"()x2dx2 有介值定理,至少一點(diǎn)a,a,使2a3f"() f"()x2dx a因 a

f(x)dx14.f(x在0,π

xf(x)dx

xf(xcosxdx0f(x在(0, f"( f"(內(nèi)至少有兩個(gè)不同的零點(diǎn) 0【證】法一令F(x) xf(t)dt,則F(0)F(π)0 0 πf(x)cosxdx F(x)cosxF(x)cosx F(x)sinxdx F(x)sin所以存在(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論