版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第頁共頁高三數(shù)學(xué)重要知識點總結(jié)考點一:集合與簡易邏輯考點二:函數(shù)與導(dǎo)數(shù)函數(shù)是高考的重點內(nèi)容,以選擇題和填空題的為載體針對性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對數(shù)、冪函數(shù))的應(yīng)用等,分值約為10分,解答題與導(dǎo)數(shù)交匯在一起考查函數(shù)的性質(zhì)。導(dǎo)數(shù)部分一方面考查導(dǎo)數(shù)的運算與導(dǎo)數(shù)的幾何意義,另一方面考查導(dǎo)數(shù)的簡單應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問題、參數(shù)的取值范圍問題、方程根的個數(shù)問題、不等式的證明等問題??键c三:三角函數(shù)與平面向量考點四:數(shù)列與不等式不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規(guī)劃問題、基本不等式的應(yīng)用等,通常會在小題中設(shè)置1到2道題。對不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導(dǎo)數(shù)等解答題中進行考查.在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項公式、求和公式等的靈活應(yīng)用,一道解答題大多凸顯以數(shù)列知識為工具,綜合運用函數(shù)、方程、不等式等解決問題的能力,它們都屬于中、高檔題目.高三數(shù)學(xué)復(fù)習(xí)知識點摘要(1)先看“充分條件和必要條件”當(dāng)命題“若p則q”為真時,可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。但為什么說q是p的必要條件呢事實上,與“p=>q”等價的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對于p是必不可少的,因而是必要的。(2)再看“充要條件”若有p=>q,同時q=>p,則p既是q的充分條件,又是必要條件。簡稱為p是q的充要條件。記作p<=>q(3)定義與充要條件數(shù)學(xué)中,只有A是B的充要條件時,才用A去定義B,因此每個定義中都包含一個充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。顯然,一個定理如果有逆定理,那么定理、逆定理合在一起,可以用一個含有充要條件的語句來表示。“充要條件”有時還可以改用“當(dāng)且僅當(dāng)”來表示,其中“當(dāng)”表示“充分”?!皟H當(dāng)”表示“必要”。(4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結(jié)論”都可作為必要條件。高三數(shù)學(xué)必修一知識點大全1.函數(shù)的奇偶性(1)若f(x)是偶函數(shù),那么f(x)=f(-x);(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));(3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;2.復(fù)合函數(shù)的有關(guān)問題(1)復(fù)合函數(shù)定義域求法:若已知的定義域為[a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;3.函數(shù)圖像(或方程曲線的對稱性)(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上;(2)證明圖像C1與C2的對稱性,即證明C1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲線C1:f(x,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;(5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱;(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱;4.函數(shù)的周期性(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);(4)若y=f(x)關(guān)于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);(5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);5.方程(1)方程k=f(x)有解k∈D(D為f(x)的值域);(2)a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;(3)(a>0,a≠1,b>0,n∈R+);logaN=(a>0,a≠1,b>0,b≠1);(4)logab的符號由口訣“同正異負”記憶;alogaN=N(a>0,a≠1,N>0);6.映射判斷對應(yīng)是否為映射時,抓住兩點:(1)A中元素必須都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;7.函數(shù)單調(diào)性(1)能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性;(2)依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題8.反函數(shù)對于反函數(shù),應(yīng)掌握以下一些結(jié)論:(1)定義域上的單調(diào)函數(shù)必有反函數(shù);(2)奇函數(shù)的反函數(shù)也是奇函數(shù);(3)定義域為非單元素集的偶函數(shù)不存在反函數(shù);(4)周期函數(shù)不存在反函數(shù);(5)互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性;(5)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).9.數(shù)形結(jié)合處理二次函數(shù)的問題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關(guān)系.10.高三數(shù)學(xué)重要知識點總結(jié)(二)一個推導(dǎo)利用錯位相減法推導(dǎo)等比數(shù)列的前n項和:Sn=a1+a1q+a1q2+…+a1qn-1,同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,兩式相減得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).兩個防范(1)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗證a1≠0.(2)在運用等比數(shù)列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導(dǎo)致解題失誤.三種方法等比數(shù)列的判斷方法有:(1)定義法:若an+1/an=q(q為非零常數(shù))或an/an-1=q(q為非零常數(shù)且n≥2且n∈N____,則{an}是等比數(shù)列.(2)中項公式法:在數(shù)列{an}中,an≠0且a=an·an+2(n∈N____,則數(shù)列{an}是等比數(shù)列.(3)通項公式法:若數(shù)列通項公式可寫成an=c·qn(c,q均是不為0的常數(shù),n∈N____,則{an}是等比數(shù)列.注:前兩種方法也可用來證明一個數(shù)列為等比數(shù)列.高三數(shù)學(xué)重要知識點總結(jié)(三)1.數(shù)列的定義、分類與通項公式(1)數(shù)列的定義:①數(shù)列:按照一定順序排列的一列數(shù).②數(shù)列的項:數(shù)列中的每一個數(shù).(2)數(shù)列的分類:分類標準類型滿足條件項數(shù)有窮數(shù)列項數(shù)有限無窮數(shù)列項數(shù)無限項與項間的大小關(guān)系遞增數(shù)列an+1>an其中n∈N____遞減數(shù)列an+1<an<p="">常數(shù)列an+1=an(3)數(shù)列的通項公式:如果數(shù)列{an}的第n項與序號n之間的關(guān)系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的通項公式.2.數(shù)列的遞推公式如果已知數(shù)列{an}的首項(或前幾項),且任一項an與它的前一項an-1(n≥2)(或前幾項)間的關(guān)系可用一個公式來表示,那么這個公式叫數(shù)列的遞推公式.3.對數(shù)列概念的理解(1)數(shù)列是按一定“順序”排列的一列數(shù),一個數(shù)列不僅與構(gòu)成它的“數(shù)”有關(guān),而且還與這些“數(shù)”的排列順序有關(guān),這有別于集合中元素的無序性.因此,若組成兩個數(shù)列的數(shù)相同而排列次序不同,那么它們就是不同的兩個數(shù)列.(2)數(shù)列中的數(shù)可以重復(fù)出現(xiàn),而集合中的元素不能重復(fù)出現(xiàn),這也是數(shù)列與數(shù)集的區(qū)別.4.數(shù)列的函數(shù)特征數(shù)列是一個定義域為正整數(shù)集N____或它的有限子集{1,2,3,…,n})的特殊函數(shù),數(shù)列的通項公式也就是相應(yīng)的函數(shù)解析式,即f(n)=an(n∈N____.高三數(shù)學(xué)重要知識點總結(jié)(四)a(1)=a,a(n)為公差為r的等差數(shù)列通項公式:a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.可用歸納法證明。n=1時,a(1)=a+(1-1)r=a。成立。假設(shè)n=k時,等差數(shù)列的通項公式成立。a(k)=a+(k-1)r則,n=k+1時,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.通項公式也成立。因此,由歸納法知,等差數(shù)列的通項公式是正確的。求和公式:S(n)=a(1)+a(2)+...+a(n)=a+(a+r)+...+[a+(n-1)r]=na+r[1+2+...+(n-1)]=na+n(n-1)r/2同樣,可用歸納法證明求和公式。a(1)=a,a(n)為公比為r(r不等于0)的等比數(shù)列通項公
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版木制家具生產(chǎn)加工木工合作合同范本4篇
- 2025版委托檢測合同書-光纖網(wǎng)絡(luò)性能檢測技術(shù)3篇
- 二零二五版水產(chǎn)品電商平臺大數(shù)據(jù)分析服務(wù)合同2篇
- 2025年度母子公司新能源儲能技術(shù)研發(fā)合作合同3篇
- 《吳組緗天下太平》課件
- 單板加工自動化與智能化技術(shù)考核試卷
- 2025版互聯(lián)網(wǎng)醫(yī)療投資項目融資借款合同3篇
- 《物價上漲時政》課件
- 2025年度木工工具租賃與施工服務(wù)承包合同4篇
- 2025年兒童玩具連鎖店加盟合同
- 農(nóng)民工工資表格
- 【寒假預(yù)習(xí)】專題04 閱讀理解 20篇 集訓(xùn)-2025年人教版(PEP)六年級英語下冊寒假提前學(xué)(含答案)
- 2024年智能監(jiān)獄安防監(jiān)控工程合同3篇
- 2024年度窯爐施工協(xié)議詳例細則版B版
- 幼兒園籃球課培訓(xùn)
- 【企業(yè)盈利能力探析的國內(nèi)外文獻綜述2400字】
- 統(tǒng)編版(2024新版)七年級《道德與法治》上冊第一單元《少年有夢》單元測試卷(含答案)
- 100道20以內(nèi)的口算題共20份
- 高三完形填空專項訓(xùn)練單選(部分答案)
- 護理查房高鉀血癥
- 項目監(jiān)理策劃方案匯報
評論
0/150
提交評論