2022-2023學(xué)年江西省贛州市重點(diǎn)達(dá)標(biāo)名校中考沖刺卷數(shù)學(xué)試題含解析_第1頁(yè)
2022-2023學(xué)年江西省贛州市重點(diǎn)達(dá)標(biāo)名校中考沖刺卷數(shù)學(xué)試題含解析_第2頁(yè)
2022-2023學(xué)年江西省贛州市重點(diǎn)達(dá)標(biāo)名校中考沖刺卷數(shù)學(xué)試題含解析_第3頁(yè)
2022-2023學(xué)年江西省贛州市重點(diǎn)達(dá)標(biāo)名校中考沖刺卷數(shù)學(xué)試題含解析_第4頁(yè)
2022-2023學(xué)年江西省贛州市重點(diǎn)達(dá)標(biāo)名校中考沖刺卷數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年中考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.下面調(diào)查方式中,合適的是()A.調(diào)查你所在班級(jí)同學(xué)的體重,采用抽樣調(diào)查方式B.調(diào)查烏金塘水庫(kù)的水質(zhì)情況,采用抽樣調(diào)査的方式C.調(diào)查《CBA聯(lián)賽》欄目在我市的收視率,采用普查的方式D.要了解全市初中學(xué)生的業(yè)余愛好,采用普查的方式2.如圖,在RtΔABC中,AB=9,BC=6,∠B=90°,將ΔABC折疊,使A點(diǎn)與BC的中點(diǎn)D重合,折痕為MN,則線段BN的長(zhǎng)為()A.52 B.53 C.43.直線AB、CD相交于點(diǎn)O,射線OM平分∠AOD,點(diǎn)P在射線OM上(點(diǎn)P與點(diǎn)O不重合),如果以點(diǎn)P為圓心的圓與直線AB相離,那么圓P與直線CD的位置關(guān)系是()A.相離 B.相切 C.相交 D.不確定4.若點(diǎn)A(a,b),B(,c)都在反比例函數(shù)y=的圖象上,且﹣1<c<0,則一次函數(shù)y=(b﹣c)x+ac的大致圖象是()A. B.C. D.5.如圖,平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別落在x、y軸上,點(diǎn)B坐標(biāo)為(6,4),反比例函數(shù)的圖象與AB邊交于點(diǎn)D,與BC邊交于點(diǎn)E,連結(jié)DE,將△BDE沿DE翻折至△B'DE處,點(diǎn)B'恰好落在正比例函數(shù)y=kx圖象上,則k的值是()A. B. C. D.6.某種植基地2016年蔬菜產(chǎn)量為80噸,預(yù)計(jì)2018年蔬菜產(chǎn)量達(dá)到100噸,求蔬菜產(chǎn)量的年平均增長(zhǎng)率,設(shè)蔬菜產(chǎn)量的年平均增長(zhǎng)率為x,則可列方程為()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1007.如圖是小強(qiáng)用八塊相同的小正方體搭建的一個(gè)積木,它的左視圖是()A. B. C. D.8.估算的運(yùn)算結(jié)果應(yīng)在(

)A.2到3之間 B.3到4之間C.4到5之間 D.5到6之間9.甲骨文是我國(guó)的一種古代文字,是漢字的早期形式,下列甲骨文中,不是軸對(duì)稱的是()A. B. C. D.10.在0.3,﹣3,0,﹣這四個(gè)數(shù)中,最大的是()A.0.3 B.﹣3 C.0 D.﹣11.已知直線m∥n,將一塊含30°角的直角三角板ABC按如圖方式放置(∠ABC=30°),其中A,B兩點(diǎn)分別落在直線m,n上,若∠1=20°,則∠2的度數(shù)為()A.20° B.30° C.45° D.50°12.某運(yùn)動(dòng)會(huì)頒獎(jiǎng)臺(tái)如圖所示,它的主視圖是()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,D,E分別是△ABC的邊AB、BC上的點(diǎn),且DE∥AC,AE、CD相交于點(diǎn)O,若S△DOE:S△COA=1:16,則S△BDE與S△CDE的比是___________.14.如圖,AB是⊙O的直徑,點(diǎn)C在AB的延長(zhǎng)線上,CD與⊙O相切于點(diǎn)D,若∠C=20°,則∠CDA=°.15.七巧板是我國(guó)祖先創(chuàng)造的一種智力玩具,它來源于勾股法,如圖①整幅七巧板是由正方形ABCD分割成七小塊(其中:五塊等腰直角三角形、一塊正方形和一塊平行四邊形)組成,如圖②是由七巧板拼成的一個(gè)梯形,若正方形ABCD的邊長(zhǎng)為12cm,則梯形MNGH的周長(zhǎng)是cm(結(jié)果保留根號(hào)).16.如圖,點(diǎn)P的坐標(biāo)為(2,2),點(diǎn)A,B分別在x軸,y軸的正半軸上運(yùn)動(dòng),且∠APB=90°.下列結(jié)論:①PA=PB;②當(dāng)OA=OB時(shí)四邊形OAPB是正方形;③四邊形OAPB的面積和周長(zhǎng)都是定值;④連接OP,AB,則AB>OP.其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)17.分解因式:x3﹣2x2+x=______.18.分解因式:2a2﹣2=_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于點(diǎn)F,連接CF,求證:AF=DC;若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.20.(6分)直線y1=kx+b與反比例函數(shù)的圖象分別交于點(diǎn)A(m,4)和點(diǎn)B(n,2),與坐標(biāo)軸分別交于點(diǎn)C和點(diǎn)D.(1)求直線AB的解析式;(2)根據(jù)圖象寫出不等式kx+b﹣≤0的解集;(3)若點(diǎn)P是x軸上一動(dòng)點(diǎn),當(dāng)△COD與△ADP相似時(shí),求點(diǎn)P的坐標(biāo).21.(6分)已知AC=DC,AC⊥DC,直線MN經(jīng)過點(diǎn)A,作DB⊥MN,垂足為B,連接CB.(1)直接寫出∠D與∠MAC之間的數(shù)量關(guān)系;(2)①如圖1,猜想AB,BD與BC之間的數(shù)量關(guān)系,并說明理由;②如圖2,直接寫出AB,BD與BC之間的數(shù)量關(guān)系;(3)在MN繞點(diǎn)A旋轉(zhuǎn)的過程中,當(dāng)∠BCD=30°,BD=時(shí),直接寫出BC的值.22.(8分)一次函數(shù)y=34x的圖象如圖所示,它與二次函數(shù)y=ax2(1)求點(diǎn)C的坐標(biāo);(2)設(shè)二次函數(shù)圖象的頂點(diǎn)為D.①若點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,且△ACD的面積等于3,求此二次函數(shù)的關(guān)系式;②若CD=AC,且△ACD的面積等于10,求此二次函數(shù)的關(guān)系式.23.(8分)某商場(chǎng)要經(jīng)營(yíng)一種新上市的文具,進(jìn)價(jià)為20元,試營(yíng)銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量為250件,銷售單價(jià)每上漲1元,每天的銷售量就減少10件寫出商場(chǎng)銷售這種文具,每天所得的銷售利潤(rùn)(元)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式;求銷售單價(jià)為多少元時(shí),該文具每天的銷售利潤(rùn)最大;商場(chǎng)的營(yíng)銷部結(jié)合上述情況,提出了A、B兩種營(yíng)銷方案方案A:該文具的銷售單價(jià)高于進(jìn)價(jià)且不超過30元;方案B:每天銷售量不少于10件,且每件文具的利潤(rùn)至少為25元請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說明理由24.(10分)如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)P是拋物線上在第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),且點(diǎn)P的橫坐標(biāo)為t.(1)求拋物線的表達(dá)式;(2)設(shè)拋物線的對(duì)稱軸為l,l與x軸的交點(diǎn)為D.在直線l上是否存在點(diǎn)M,使得四邊形CDPM是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.(3)如圖2,連接BC,PB,PC,設(shè)△PBC的面積為S.①求S關(guān)于t的函數(shù)表達(dá)式;②求P點(diǎn)到直線BC的距離的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).25.(10分)如圖,在每個(gè)小正方形的邊長(zhǎng)均為1的方格紙中,有線段AB和線段CD,點(diǎn)A、B、C、D均在小正方形的頂點(diǎn)上.(1)在方格紙中畫出以AB為斜邊的等腰直角三角形ABE,點(diǎn)E在小正方形的頂點(diǎn)上;(2)在方格紙中畫出以CD為對(duì)角線的矩形CMDN(頂點(diǎn)字母按逆時(shí)針順序),且面積為10,點(diǎn)M、N均在小正方形的頂點(diǎn)上;(3)連接ME,并直接寫出EM的長(zhǎng).26.(12分)如圖,拋物線經(jīng)過點(diǎn)A(﹣2,0),點(diǎn)B(0,4).(1)求這條拋物線的表達(dá)式;(2)P是拋物線對(duì)稱軸上的點(diǎn),聯(lián)結(jié)AB、PB,如果∠PBO=∠BAO,求點(diǎn)P的坐標(biāo);(3)將拋物線沿y軸向下平移m個(gè)單位,所得新拋物線與y軸交于點(diǎn)D,過點(diǎn)D作DE∥x軸交新拋物線于點(diǎn)E,射線EO交新拋物線于點(diǎn)F,如果EO=2OF,求m的值.27.(12分)勾股定理神秘而美妙,它的證法多樣,其中的“面積法”給了李明靈感,他驚喜地發(fā)現(xiàn);當(dāng)兩個(gè)全等的直角三角形如圖(1)擺放時(shí)可以利用面積法”來證明勾股定理,過程如下如圖(1)∠DAB=90°,求證:a2+b2=c2證明:連接DB,過點(diǎn)D作DF⊥BC交BC的延長(zhǎng)線于點(diǎn)F,則DF=b-aS四邊形ADCB=S四邊形ADCB=∴化簡(jiǎn)得:a2+b2=c2請(qǐng)參照上述證法,利用“面積法”完成如圖(2)的勾股定理的證明,如圖(2)中∠DAB=90°,求證:a2+b2=c2

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

由普查得到的調(diào)查結(jié)果比較準(zhǔn)確,但所費(fèi)人力、物力和時(shí)間較多,而抽樣調(diào)查得到的調(diào)查結(jié)果比較近似.【詳解】A、調(diào)查你所在班級(jí)同學(xué)的體重,采用普查,故A不符合題意;B、調(diào)查烏金塘水庫(kù)的水質(zhì)情況,無法普查,采用抽樣調(diào)査的方式,故B符合題意;C、調(diào)查《CBA聯(lián)賽》欄目在我市的收視率,調(diào)查范圍廣適合抽樣調(diào)查,故C不符合題意;D、要了解全市初中學(xué)生的業(yè)余愛好,調(diào)查范圍廣適合抽樣調(diào)查,故D不符合題意;故選B.【點(diǎn)睛】本題考查了抽樣調(diào)查和全面調(diào)查的區(qū)別,選擇普查還是抽樣調(diào)查要根據(jù)所要考查的對(duì)象的特征靈活選用,一般來說,對(duì)于具有破壞性的調(diào)查、無法進(jìn)行普查、普查的意義或價(jià)值不大,應(yīng)選擇抽樣調(diào)查,對(duì)于精確度要求高的調(diào)查,事關(guān)重大的調(diào)查往往選用普查.2、C【解析】

設(shè)BN=x,則由折疊的性質(zhì)可得DN=AN=9-x,根據(jù)中點(diǎn)的定義可得BD=3,在Rt△BND中,根據(jù)勾股定理可得關(guān)于x的方程,解方程即可求解.【詳解】設(shè)BN=x,則AN=9-x.由折疊的性質(zhì),得DN=AN=9-x.因?yàn)辄c(diǎn)D是BC的中點(diǎn),所以BD=3.在RtΔNBD中,由勾股定理,得BN即x2解得x=4,故線段BN的長(zhǎng)為4.故選C.【點(diǎn)睛】此題考查了折疊的性質(zhì),勾股定理,中點(diǎn)的定義以及方程思想,熟練掌握折疊的性質(zhì)及勾股定理是解答本題的關(guān)鍵.3、A【解析】

根據(jù)角平分線的性質(zhì)和點(diǎn)與直線的位置關(guān)系解答即可.【詳解】解:如圖所示;∵OM平分∠AOD,以點(diǎn)P為圓心的圓與直線AB相離,∴以點(diǎn)P為圓心的圓與直線CD相離,故選:A.【點(diǎn)睛】此題考查直線與圓的位置關(guān)系,關(guān)鍵是根據(jù)角平分線的性質(zhì)解答.4、D【解析】

將,代入,得,,然后分析與的正負(fù),即可得到的大致圖象.【詳解】將,代入,得,,即,.∴.∵,∴,∴.即與異號(hào).∴.又∵,故選D.【點(diǎn)睛】本題考查了反比例函數(shù)圖像上點(diǎn)的坐標(biāo)特征,一次函數(shù)的圖像與性質(zhì),得出與的正負(fù)是解答本題的關(guān)鍵.5、B【解析】

根據(jù)矩形的性質(zhì)得到,CB∥x軸,AB∥y軸,于是得到D、E坐標(biāo),根據(jù)勾股定理得到ED,連接BB′,交ED于F,過B′作B′G⊥BC于G,根據(jù)軸對(duì)稱的性質(zhì)得到BF=B′F,BB′⊥ED求得BB′,設(shè)EG=x,根據(jù)勾股定理即可得到結(jié)論.【詳解】解:∵矩形OABC,∴CB∥x軸,AB∥y軸.∵點(diǎn)B坐標(biāo)為(6,1),∴D的橫坐標(biāo)為6,E的縱坐標(biāo)為1.∵D,E在反比例函數(shù)的圖象上,∴D(6,1),E(,1),∴BE=6﹣=,BD=1﹣1=3,∴ED==.連接BB′,交ED于F,過B′作B′G⊥BC于G.∵B,B′關(guān)于ED對(duì)稱,∴BF=B′F,BB′⊥ED,∴BF?ED=BE?BD,即BF=3×,∴BF=,∴BB′=.設(shè)EG=x,則BG=﹣x.∵BB′2﹣BG2=B′G2=EB′2﹣GE2,∴,∴x=,∴EG=,∴CG=,∴B′G=,∴B′(,﹣),∴k=.故選B.【點(diǎn)睛】本題考查了翻折變換(折疊問題),矩形的性質(zhì),勾股定理,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.6、A【解析】

利用增長(zhǎng)后的量=增長(zhǎng)前的量×(1+增長(zhǎng)率),設(shè)平均每次增長(zhǎng)的百分率為x,根據(jù)“從80噸增加到100噸”,即可得出方程.【詳解】由題意知,蔬菜產(chǎn)量的年平均增長(zhǎng)率為x,根據(jù)2016年蔬菜產(chǎn)量為80噸,則2017年蔬菜產(chǎn)量為80(1+x)噸,2018年蔬菜產(chǎn)量為80(1+x)(1+x)噸,預(yù)計(jì)2018年蔬菜產(chǎn)量達(dá)到100噸,即:80(1+x)2=100,故選A.【點(diǎn)睛】本題考查了一元二次方程的應(yīng)用(增長(zhǎng)率問題).解題的關(guān)鍵在于理清題目的含義,找到2017年和2018年的產(chǎn)量的代數(shù)式,根據(jù)條件找準(zhǔn)等量關(guān)系式,列出方程.7、D【解析】

左視圖從左往右,2列正方形的個(gè)數(shù)依次為2,1,依此得出圖形D正確.故選D.【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?、D【解析】

解:=,∵2<<3,∴在5到6之間.故選D.【點(diǎn)睛】此題主要考查了估算無理數(shù)的大小,正確進(jìn)行計(jì)算是解題關(guān)鍵.9、D【解析】試題分析:A.是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;B.是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;C.是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;D.不是軸對(duì)稱圖形,故本選項(xiàng)正確.故選D.考點(diǎn):軸對(duì)稱圖形.10、A【解析】

根據(jù)正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù),比較即可【詳解】∵-3<-<0<0.3∴最大為0.3故選A.【點(diǎn)睛】本題考查實(shí)數(shù)比較大小,解題的關(guān)鍵是正確理解正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù),本題屬于基礎(chǔ)題型.11、D【解析】

根據(jù)兩直線平行,內(nèi)錯(cuò)角相等計(jì)算即可.【詳解】因?yàn)閙∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故選D.【點(diǎn)睛】本題主要考查平行線的性質(zhì),清楚兩直線平行,內(nèi)錯(cuò)角相等是解答本題的關(guān)鍵.12、C【解析】

從正面看到的圖形如圖所示:,故選C.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1:3【解析】根據(jù)相似三角形的判定,由DE∥AC,可知△DOE∽△COA,△BDE∽△BCA,然后根據(jù)相似三角形的面積比等于相似比的平方,可由,求得DE:AC=1:4,即BE:BC=1:4,因此可得BE:EC=1:3,最后根據(jù)同高不同底的三角形的面積可知與的比是1:3.故答案為1:3.14、1.【解析】

連接OD,根據(jù)圓的切線定理和等腰三角形的性質(zhì)可得出答案.【詳解】連接OD,則∠ODC=90°,∠COD=70°,∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=1°,故答案為1.考點(diǎn):切線的性質(zhì).15、24+24【解析】

仔細(xì)觀察梯形從而發(fā)現(xiàn)其各邊與原正方形各邊之間的關(guān)系,則不難求得梯形的周長(zhǎng).【詳解】解:觀察圖形得MH=GN=AD=12,HG=AC,AD=DC=12,AC=12,HG=6.梯形MNGH的周長(zhǎng)=HG+HM+MN+NG=2HM+4HG=24+24.故答案為24+24.【點(diǎn)睛】此題主要考查學(xué)生對(duì)等腰梯形的性質(zhì)及正方形的性質(zhì)的運(yùn)用及觀察分析圖形的能力.16、①②【解析】

過P作PM⊥y軸于M,PN⊥x軸于N,得出四邊形PMON是正方形,推出OM=OM=ON=PN=1,證△APM≌△BPN,可對(duì)①進(jìn)行判斷,推出AM=BN,求出OA+OB=ON+OM=2,當(dāng)當(dāng)OA=OB時(shí),OA=OB=1,然后可對(duì)②作出判斷,由△APM≌△BPN可對(duì)四邊形OAPB的面積作出判斷,由OA+OB=2,然后依據(jù)AP和PB的長(zhǎng)度變化情況可對(duì)四邊形OAPB的周長(zhǎng)作出判斷,求得AB的最大值以及OP的長(zhǎng)度可對(duì)④作出判斷.【詳解】過P作PM⊥y軸于M,PN⊥x軸于N

∵P(1,1),

∴PN=PM=1.

∵x軸⊥y軸,

∴∠MON=∠PNO=∠PMO=90°,

∴∠MPN=360°-90°-90°-90°=90°,則四邊形MONP是正方形,

∴OM=ON=PN=PM=1,

∵∠MPA=∠APB=90°,

∴∠MPA=∠NPB.

∵∠MPA=∠NPB,PM=PN,∠PMA=∠PNB,

∴△MPA≌△NPB,

∴PA=PB,故①正確.

∵△MPA≌△NPB,

∴AM=BN,

∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2.

當(dāng)OA=OB時(shí),OA=OB=1,則點(diǎn)A、B分別與點(diǎn)M、N重合,此時(shí)四邊形OAPB是正方形,故②正確.

∵△MPA≌△NPB,

∴四邊形OAPB的面積=四邊形AONP的面積+△PNB的面積=四邊形AONP的面積+△PMA的面積=正方形PMON的面積=2.

∵OA+OB=2,PA=PB,且PA和PB的長(zhǎng)度會(huì)不斷的變化,故周長(zhǎng)不是定值,故③錯(cuò)誤.

,∵∠AOB+∠APB=180°,

∴點(diǎn)A、O、B、P共圓,且AB為直徑,所以

AB≥OP,故④錯(cuò)誤.

故答案為:①②.【點(diǎn)睛】本題考查了全等三角形的性質(zhì)和判定,三角形的內(nèi)角和定理,坐標(biāo)與圖形性質(zhì),正方形的性質(zhì)的應(yīng)用,關(guān)鍵是推出AM=BN和推出OA+OB=OM+ON17、x(x-1)2.【解析】由題意得,x3﹣2x2+x=x(x﹣1)218、2(a+1)(a﹣1).【解析】

先提取公因式2,再對(duì)余下的多項(xiàng)式利用平方差公式繼續(xù)分解.【詳解】解:2a2﹣2,=2(a2﹣1),=2(a+1)(a﹣1).【點(diǎn)睛】本題考查了提公因式法和公式法進(jìn)行因式分解,一個(gè)多項(xiàng)式有公因式首先提取公因式,然后再用其他方法進(jìn)行因式分解,同時(shí)因式分解要徹底,直到不能分解為止.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)見解析(2)見解析【解析】

(1)根據(jù)AAS證△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四邊形ADCF是平行四邊形,根據(jù)直角三角形斜邊上中線性質(zhì)得出CD=AD,根據(jù)菱形的判定推出即可.【詳解】解:(1)證明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中點(diǎn),AD是BC邊上的中線,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四邊形ADCF是菱形,證明如下:∵AF∥BC,AF=DC,∴四邊形ADCF是平行四邊形.∵AC⊥AB,AD是斜邊BC的中線,∴AD=DC.∴平行四邊形ADCF是菱形20、(1)y=﹣x+6;(2)0<x<2或x>4;(3)點(diǎn)P的坐標(biāo)為(2,0)或(﹣3,0).【解析】

(1)將點(diǎn)坐標(biāo)代入雙曲線中即可求出,最后將點(diǎn)坐標(biāo)代入直線解析式中即可得出結(jié)論;(2)根據(jù)點(diǎn)坐標(biāo)和圖象即可得出結(jié)論;(3)先求出點(diǎn)坐標(biāo),進(jìn)而求出,設(shè)出點(diǎn)P坐標(biāo),最后分兩種情況利用相似三角形得出比例式建立方程求解即可得出結(jié)論.【詳解】解:(1)∵點(diǎn)和點(diǎn)在反比例函數(shù)的圖象上,,解得,即把兩點(diǎn)代入中得,解得:,所以直線的解析式為:;(2)由圖象可得,當(dāng)時(shí),的解集為或.(3)由(1)得直線的解析式為,當(dāng)時(shí),y=6,,,當(dāng)時(shí),,∴點(diǎn)坐標(biāo)為.設(shè)P點(diǎn)坐標(biāo)為,由題可以,點(diǎn)在點(diǎn)左側(cè),則由可得①當(dāng)時(shí),,,解得,故點(diǎn)P坐標(biāo)為②當(dāng)時(shí),,,解得,即點(diǎn)P的坐標(biāo)為因此,點(diǎn)P的坐標(biāo)為或時(shí),與相似.【點(diǎn)睛】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,相似三角形的性質(zhì),用方程的思想和分類討論的思想解決問題是解本題的關(guān)鍵.21、(1)相等或互補(bǔ);(2)①BD+AB=BC;②AB﹣BD=BC;(3)BC=或.【解析】

(1)分為點(diǎn)C,D在直線MN同側(cè)和點(diǎn)C,D在直線MN兩側(cè),兩種情況討論即可解題,(2)①作輔助線,證明△BCD≌△FCA,得BC=FC,∠BCD=∠FCA,∠FCB=90°,即△BFC是等腰直角三角形,即可解題,②在射線AM上截取AF=BD,連接CF,證明△BCD≌△FCA,得△BFC是等腰直角三角形,即可解題,(3)分為當(dāng)點(diǎn)C,D在直線MN同側(cè),當(dāng)點(diǎn)C,D在直線MN兩側(cè),兩種情況解題即可,見詳解.【詳解】解:(1)相等或互補(bǔ);理由:當(dāng)點(diǎn)C,D在直線MN同側(cè)時(shí),如圖1,∵AC⊥CD,BD⊥MN,∴∠ACD=∠BDC=90°,在四邊形ABDC中,∠BAD+∠D=360°﹣∠ACD﹣∠BDC=180°,∵∠BAC+∠CAM=180°,∴∠CAM=∠D;當(dāng)點(diǎn)C,D在直線MN兩側(cè)時(shí),如圖2,∵∠ACD=∠ABD=90°,∠AEC=∠BED,∴∠CAB=∠D,∵∠CAB+∠CAM=180°,∴∠CAM+∠D=180°,即:∠D與∠MAC之間的數(shù)量是相等或互補(bǔ);(2)①猜想:BD+AB=BC如圖3,在射線AM上截取AF=BD,連接CF.又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=∵AF+AB=BF=∴BD+AB=;②如圖2,在射線AM上截取AF=BD,連接CF,又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=∵AB﹣AF=BF=∴AB﹣BD=;(3)①當(dāng)點(diǎn)C,D在直線MN同側(cè)時(shí),如圖3﹣1,由(2)①知,△ACF≌△DCB,∴CF=BC,∠ACF=∠ACD=90°,∴∠ABC=45°,∵∠ABD=90°,∴∠CBD=45°,過點(diǎn)D作DG⊥BC于G,在Rt△BDG中,∠CBD=45°,BD=,∴DG=BG=1,在Rt△CGD中,∠BCD=30°,∴CG=DG=,∴BC=CG+BG=+1,②當(dāng)點(diǎn)C,D在直線MN兩側(cè)時(shí),如圖2﹣1,過點(diǎn)D作DG⊥CB交CB的延長(zhǎng)線于G,同①的方法得,BG=1,CG=,∴BC=CG﹣BG=﹣1即:BC=或,【點(diǎn)睛】本題考查了三角形中的邊長(zhǎng)關(guān)系,等腰直角三角形的性質(zhì),中等難度,分類討論與作輔助線是解題關(guān)鍵.22、(1)點(diǎn)C(1,32);(1)①y=38x1-32x;②y=-12x【解析】試題分析:(1)求得二次函數(shù)y=ax1-4ax+c對(duì)稱軸為直線x=1,把x=1代入y=34x求得y=32,即可得點(diǎn)C的坐標(biāo);(1)①根據(jù)點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱即可得點(diǎn)D的坐標(biāo),并且求得CD的長(zhǎng),設(shè)A(m,34m),根據(jù)S△ACD=3即可求得m的值,即求得點(diǎn)A的坐標(biāo),把A.D的坐標(biāo)代入y=ax1-4ax+c得方程組,解得a、c的值即可得二次函數(shù)的表達(dá)式.②設(shè)A(m,34m)(m<1),過點(diǎn)A作AE⊥CD于E,則AE=1-m,CE=根據(jù)勾股定理用m表示出AC的長(zhǎng),根據(jù)△ACD的面積等于10可求得m的值,即可得A點(diǎn)的坐標(biāo),分兩種情況:第一種情況,若a>0,則點(diǎn)D在點(diǎn)C下方,求點(diǎn)D的坐標(biāo);第二種情況,若a<0,則點(diǎn)D在點(diǎn)C上方,求點(diǎn)D的坐標(biāo),分別把A、D的坐標(biāo)代入y=ax1-4ax+c即可求得函數(shù)表達(dá)式.試題解析:(1)y=ax1-4ax+c=a(x-1)1-4a+c.∴二次函數(shù)圖像的對(duì)稱軸為直線x=1.當(dāng)x=1時(shí),y=34x=32,∴C(1,(1)①∵點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,∴D(1,-32設(shè)A(m,34m)(m<1),由S△ACD=3,得1由A(0,0)、D(1,-32)得解得a=38∴y=38x1-3②設(shè)A(m,34m)(m<1),過點(diǎn)A作AE⊥CD于E,則AE=1-m,CE=32-AC==54(1-m),∵CD=AC,∴CD=54由S△ACD=10得12×54(1-m)∴A(-1,-32若a>0,則點(diǎn)D在點(diǎn)C下方,∴D(1,-72由A(-1,-32)、D(1,-72)得解得∴y=18x1-1若a<0,則點(diǎn)D在點(diǎn)C上方,∴D(1,132由A(-1,-32)、D(1,132)得解得∴y=-12x1+1x+9考點(diǎn):二次函數(shù)與一次函數(shù)的綜合題.23、(1)w=-10x2+700x-10000;(2)即銷售單價(jià)為35元時(shí),該文具每天的銷售利潤(rùn)最大;(3)A方案利潤(rùn)更高.【解析】

試題分析:(1)根據(jù)利潤(rùn)=(單價(jià)-進(jìn)價(jià))×銷售量,列出函數(shù)關(guān)系式即可.(2)根據(jù)(1)式列出的函數(shù)關(guān)系式,運(yùn)用配方法求最大值.(3)分別求出方案A、B中x的取值范圍,然后分別求出A、B方案的最大利潤(rùn),然后進(jìn)行比較.【詳解】解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.(2)∵w=-10x2+700x-10000=-10(x-35)2+2250∴當(dāng)x=35時(shí),w有最大值2250,即銷售單價(jià)為35元時(shí),該文具每天的銷售利潤(rùn)最大.(3)A方案利潤(rùn)高,理由如下:A方案中:20<x≤30,函數(shù)w=-10(x-35)2+2250隨x的增大而增大,∴當(dāng)x=30時(shí),w有最大值,此時(shí),最大值為2000元.B方案中:,解得x的取值范圍為:45≤x≤49.∵45≤x≤49時(shí),函數(shù)w=-10(x-35)2+2250隨x的增大而減小,∴當(dāng)x=45時(shí),w有最大值,此時(shí),最大值為1250元.∵2000>1250,∴A方案利潤(rùn)更高24、(1)y=﹣x2+2x+1.(2)當(dāng)t=2時(shí),點(diǎn)M的坐標(biāo)為(1,6);當(dāng)t≠2時(shí),不存在,理由見解析;(1)y=﹣x+1;P點(diǎn)到直線BC的距離的最大值為,此時(shí)點(diǎn)P的坐標(biāo)為(,).【解析】【分析】(1)由點(diǎn)A、B的坐標(biāo),利用待定系數(shù)法即可求出拋物線的表達(dá)式;(2)連接PC,交拋物線對(duì)稱軸l于點(diǎn)E,由點(diǎn)A、B的坐標(biāo)可得出對(duì)稱軸l為直線x=1,分t=2和t≠2兩種情況考慮:當(dāng)t=2時(shí),由拋物線的對(duì)稱性可得出此時(shí)存在點(diǎn)M,使得四邊形CDPM是平行四邊形,再根據(jù)點(diǎn)C的坐標(biāo)利用平行四邊形的性質(zhì)可求出點(diǎn)P、M的坐標(biāo);當(dāng)t≠2時(shí),不存在,利用平行四邊形對(duì)角線互相平分結(jié)合CE≠PE可得出此時(shí)不存在符合題意的點(diǎn)M;(1)①過點(diǎn)P作PF∥y軸,交BC于點(diǎn)F,由點(diǎn)B、C的坐標(biāo)利用待定系數(shù)法可求出直線BC的解析式,根據(jù)點(diǎn)P的坐標(biāo)可得出點(diǎn)F的坐標(biāo),進(jìn)而可得出PF的長(zhǎng)度,再由三角形的面積公式即可求出S關(guān)于t的函數(shù)表達(dá)式;②利用二次函數(shù)的性質(zhì)找出S的最大值,利用勾股定理可求出線段BC的長(zhǎng)度,利用面積法可求出P點(diǎn)到直線BC的距離的最大值,再找出此時(shí)點(diǎn)P的坐標(biāo)即可得出結(jié)論.【詳解】(1)將A(﹣1,0)、B(1,0)代入y=﹣x2+bx+c,得,解得:,∴拋物線的表達(dá)式為y=﹣x2+2x+1;(2)在圖1中,連接PC,交拋物線對(duì)稱軸l于點(diǎn)E,∵拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(1,0)兩點(diǎn),∴拋物線的對(duì)稱軸為直線x=1,當(dāng)t=2時(shí),點(diǎn)C、P關(guān)于直線l對(duì)稱,此時(shí)存在點(diǎn)M,使得四邊形CDPM是平行四邊形,∵拋物線的表達(dá)式為y=﹣x2+2x+1,∴點(diǎn)C的坐標(biāo)為(0,1),點(diǎn)P的坐標(biāo)為(2,1),∴點(diǎn)M的坐標(biāo)為(1,6);當(dāng)t≠2時(shí),不存在,理由如下:若四邊形CDPM是平行四邊形,則CE=PE,∵點(diǎn)C的橫坐標(biāo)為0,點(diǎn)E的橫坐標(biāo)為0,∴點(diǎn)P的橫坐標(biāo)t=1×2﹣0=2,又∵t≠2,∴不存在;(1)①在圖2中,過點(diǎn)P作PF∥y軸,交BC于點(diǎn)F.設(shè)直線BC的解析式為y=mx+n(m≠0),將B(1,0)、C(0,1)代入y=mx+n,得,解得:,∴直線BC的解析式為y=﹣x+1,∵點(diǎn)P的坐標(biāo)為(t,﹣t2+2t+1),∴點(diǎn)F的坐標(biāo)為(t,﹣t+1),∴PF=﹣t2+2t+1﹣(﹣t+1)=﹣t2+1t,∴S=PF?OB=﹣t2+t=﹣

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論