版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,直線AB與半徑為2的⊙O相切于點(diǎn)C,D是⊙O上一點(diǎn),且∠EDC=30°,弦EF∥AB,則EF的長度為()A.2 B.2 C. D.22.如圖,把一個矩形紙片ABCD沿EF折疊后,點(diǎn)D、C分別落在D′、C′的位置,若∠EFB=65°,則∠AED′為()。A.70° B.65° C.50° D.25°3.魏晉時期的數(shù)學(xué)家劉徽首創(chuàng)割圓術(shù).為計算圓周率建立了嚴(yán)密的理論和完善的算法.作圓內(nèi)接正多邊形,當(dāng)正多邊形的邊數(shù)不斷增加時,其周長就無限接近圓的周長,進(jìn)而可用來求得較為精確的圓周率.祖沖之在劉徽的基礎(chǔ)上繼續(xù)努力,當(dāng)正多邊形的邊數(shù)增加24576時,得到了精確到小數(shù)點(diǎn)后七位的圓周率,這一成就在當(dāng)時是領(lǐng)先其他國家一千多年,如圖,依據(jù)“割圓術(shù)”,由圓內(nèi)接正六邊形算得的圓周率的近似值是()A.0.5 B.1 C.3 D.π4.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲,如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形,設(shè)直角三角形較長直角邊長為a,較短直角邊長為b,若,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.65.如圖所示,有一條線段是()的中線,該線段是().A.線段GH B.線段AD C.線段AE D.線段AF6.拋物線y=3(x﹣2)2+5的頂點(diǎn)坐標(biāo)是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)7.如圖,一把帶有60°角的三角尺放在兩條平行線間,已知量得平行線間的距離為12cm,三角尺最短邊和平行線成45°角,則三角尺斜邊的長度為()A.12cm B.12cm C.24cm D.24cm8.如圖,矩形ABOC的頂點(diǎn)A的坐標(biāo)為(﹣4,5),D是OB的中點(diǎn),E是OC上的一點(diǎn),當(dāng)△ADE的周長最小時,點(diǎn)E的坐標(biāo)是()A.(0,) B.(0,) C.(0,2) D.(0,)9.將一圓形紙片對折后再對折,得到下圖,然后沿著圖中的虛線剪開,得到兩部分,其中一部分展開后的平面圖形是()A. B. C. D.10.如圖,CE,BF分別是△ABC的高線,連接EF,EF=6,BC=10,D、G分別是EF、BC的中點(diǎn),則DG的長為()A.6 B.5 C.4 D.3二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,已知AE∥BD,∠1=130°,∠2=28°,則∠C的度數(shù)為____.12.如圖,已知在Rt△ABC中,∠ACB=90°,AB=4,分別以AC,BC為直徑作半圓,面積分別記為S1,S2,則S1+S2等_________.13.因式分解:________.14.A、B兩地之間為直線距離且相距600千米,甲開車從A地出發(fā)前往B地,乙騎自行車從B地出發(fā)前往A地,已知乙比甲晚出發(fā)1小時,兩車均勻速行駛,當(dāng)甲到達(dá)B地后立即原路原速返回,在返回途中再次與乙相遇后兩車都停止,如圖是甲、乙兩人之間的距離s(千類)與甲出發(fā)的時間t(小時)之間的圖象,則當(dāng)甲第二次與乙相遇時,乙離B地的距離為_____千米.15.如圖,AB為⊙O的直徑,C、D為⊙O上的點(diǎn),.若∠CAB=40°,則∠CAD=_____.16.圓錐的底面半徑為2,母線長為6,則它的側(cè)面積為_____.三、解答題(共8題,共72分)17.(8分)某中學(xué)采用隨機(jī)的方式對學(xué)生掌握安全知識的情況進(jìn)行測評,并按成績高低分成優(yōu)、良、中、差四個等級進(jìn)行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請根據(jù)有關(guān)信息解答:(1)接受測評的學(xué)生共有________人,扇形統(tǒng)計圖中“優(yōu)”部分所對應(yīng)扇形的圓心角為________°,并補(bǔ)全條形統(tǒng)計圖;(2)若該校共有學(xué)生1200人,請估計該校對安全知識達(dá)到“良”程度的人數(shù);(3)測評成績前五名的學(xué)生恰好3個女生和2個男生,現(xiàn)從中隨機(jī)抽取2人參加市安全知識競賽,請用樹狀圖或列表法求出抽到1個男生和1個女生的概率.18.(8分)如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c經(jīng)過A、B、C三點(diǎn),已知點(diǎn)A(﹣3,0),B(0,3),C(1,0).(1)求此拋物線的解析式.(2)點(diǎn)P是直線AB上方的拋物線上一動點(diǎn),(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線,垂足為F,交直線AB于點(diǎn)E,作PD⊥AB于點(diǎn)D.動點(diǎn)P在什么位置時,△PDE的周長最大,求出此時P點(diǎn)的坐標(biāo).19.(8分)定義:和三角形一邊和另兩邊的延長線同時相切的圓叫做三角形這邊上的旁切圓.如圖所示,已知:⊙I是△ABC的BC邊上的旁切圓,E、F分別是切點(diǎn),AD⊥IC于點(diǎn)D.(1)試探究:D、E、F三點(diǎn)是否同在一條直線上?證明你的結(jié)論.(2)設(shè)AB=AC=5,BC=6,如果△DIE和△AEF的面積之比等于m,,試作出分別以,為兩根且二次項(xiàng)系數(shù)為6的一個一元二次方程.20.(8分)小林在沒有量角器和圓規(guī)的情況下,利用刻度尺和一副三角板畫出了一個角的平分線,他的作法是這樣的:如圖:(1)利用刻度尺在∠AOB的兩邊OA,OB上分別取OM=ON;(2)利用兩個三角板,分別過點(diǎn)M,N畫OM,ON的垂線,交點(diǎn)為P;(3)畫射線OP.則射線OP為∠AOB的平分線.請寫出小林的畫法的依據(jù)______.21.(8分)“知識改變命運(yùn),科技繁榮祖國”.在舉辦一屆全市科技運(yùn)動會上.下圖為某校2017年參加科技運(yùn)動會航模比賽(包括空模、海模、車模、建模四個類別)的參賽人數(shù)統(tǒng)計圖:(1)該校參加航模比賽的總?cè)藬?shù)是人,空模所在扇形的圓心角的度數(shù)是;(2)并把條形統(tǒng)計圖補(bǔ)充完整;(3)從全市中小學(xué)參加航模比賽選手中隨機(jī)抽取80人,其中有32人獲獎.今年全市中小學(xué)參加航模比賽人數(shù)共有2500人,請你估算今年參加航模比賽的獲獎人數(shù)約是多少人?22.(10分)(1)解方程:x2﹣5x﹣6=0;(2)解不等式組:.23.(12分)某企業(yè)信息部進(jìn)行市場調(diào)研發(fā)現(xiàn):信息一:如果單獨(dú)投資A種產(chǎn)品,所獲利潤yA(萬元)與投資金額x(萬元)之間存在某種關(guān)系的部分對應(yīng)值如下表:x(萬元)122.535yA(萬元)0.40.811.22信息二:如果單獨(dú)投資B種產(chǎn)品,則所獲利潤yB(萬元)與投資金額x(萬元)之間存在二次函數(shù)關(guān)系:yB=ax2+bx,且投資2萬元時獲利潤2.4萬元,當(dāng)投資4萬元時,可獲利潤3.2萬元.(1)求出yB與x的函數(shù)關(guān)系式;(2)從所學(xué)過的一次函數(shù)、二次函數(shù)、反比例函數(shù)中確定哪種函數(shù)能表示yA與x之間的關(guān)系,并求出yA與x的函數(shù)關(guān)系式;(3)如果企業(yè)同時對A、B兩種產(chǎn)品共投資15萬元,請?jiān)O(shè)計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?24.2018年“植樹節(jié)”前夕,某小區(qū)為綠化環(huán)境,購進(jìn)200棵柏樹苗和120棵棗樹苗,且兩種樹苗所需費(fèi)用相同.每棵棗樹苗的進(jìn)價比每棵柏樹苗的進(jìn)價的2倍少5元,每棵柏樹苗的進(jìn)價是多少元.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】本題考查的圓與直線的位置關(guān)系中的相切.連接OC,EC所以∠EOC=2∠D=60°,所以△ECO為等邊三角形.又因?yàn)橄褽F∥AB所以O(shè)C垂直EF故∠OEF=30°所以EF=OE=2.2、C【解析】
首先根據(jù)AD∥BC,求出∠FED的度數(shù),然后根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等,則可知∠DEF=∠FED′,最后求得∠AED′的大?。驹斀狻拷猓骸逜D∥BC,∴∠EFB=∠FED=65°,由折疊的性質(zhì)知,∠DEF=∠FED′=65°,∴∠AED′=180°-2∠FED=50°,故選:C.【點(diǎn)睛】此題考查了長方形的性質(zhì)與折疊的性質(zhì).此題比較簡單,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.3、C【解析】
連接OC、OD,根據(jù)正六邊形的性質(zhì)得到∠COD=60°,得到△COD是等邊三角形,得到OC=CD,根據(jù)題意計算即可.【詳解】連接OC、OD,∵六邊形ABCDEF是正六邊形,∴∠COD=60°,又OC=OD,∴△COD是等邊三角形,∴OC=CD,正六邊形的周長:圓的直徑=6CD:2CD=3,故選:C.【點(diǎn)睛】本題考查的是正多邊形和圓,掌握正多邊形的中心角的計算公式是解題的關(guān)鍵.4、C【解析】
如圖所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面積為13,2ab=21﹣13=8,∴小正方形的面積為13﹣8=1.故選C.考點(diǎn):勾股定理的證明.5、B【解析】
根據(jù)三角形一邊的中點(diǎn)與此邊所對頂點(diǎn)的連線叫做三角形的中線逐一判斷即可得.【詳解】根據(jù)三角形中線的定義知:線段AD是△ABC的中線.故選B.【點(diǎn)睛】本題考查了三角形的中線,解題的關(guān)鍵是掌握三角形一邊的中點(diǎn)與此邊所對頂點(diǎn)的連線叫做三角形的中線.6、C【解析】
根據(jù)二次函數(shù)的性質(zhì)y=a(x﹣h)2+k的頂點(diǎn)坐標(biāo)是(h,k)進(jìn)行求解即可.【詳解】∵拋物線解析式為y=3(x-2)2+5,∴二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是(2,5),故選C.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),根據(jù)拋物線的頂點(diǎn)式,可確定拋物線的開口方向,頂點(diǎn)坐標(biāo)(對稱軸),最大(最小)值,增減性等.7、D【解析】
過A作AD⊥BF于D,根據(jù)45°角的三角函數(shù)值可求出AB的長度,根據(jù)含30°角的直角三角形的性質(zhì)求出斜邊AC的長即可.【詳解】如圖,過A作AD⊥BF于D,∵∠ABD=45°,AD=12,∴=12,又∵Rt△ABC中,∠C=30°,∴AC=2AB=24,故選:D.【點(diǎn)睛】本題考查解直角三角形,在直角三角形中,30°角所對的直角邊等于斜邊的一半,熟記特殊角三角函數(shù)值是解題關(guān)鍵.8、B【解析】解:作A關(guān)于y軸的對稱點(diǎn)A′,連接A′D交y軸于E,則此時,△ADE的周長最?。咚倪呅蜛BOC是矩形,∴AC∥OB,AC=OB.∵A的坐標(biāo)為(﹣4,5),∴A′(4,5),B(﹣4,0).∵D是OB的中點(diǎn),∴D(﹣2,0).設(shè)直線DA′的解析式為y=kx+b,∴,∴,∴直線DA′的解析式為.當(dāng)x=0時,y=,∴E(0,).故選B.9、C【解析】
嚴(yán)格按照圖中的方法親自動手操作一下,即可很直觀地呈現(xiàn)出來.【詳解】根據(jù)題意知,剪去的紙片一定是一個四邊形,且對角線互相垂直.故選C.【點(diǎn)睛】本題主要考查學(xué)生的動手能力及空間想象能力.對于此類問題,學(xué)生只要親自動手操作,答案就會很直觀地呈現(xiàn).10、C【解析】
連接EG、FG,根據(jù)斜邊中線長為斜邊一半的性質(zhì)即可求得EG=FG=BC,因?yàn)镈是EF中點(diǎn),根據(jù)等腰三角形三線合一的性質(zhì)可得GD⊥EF,再根據(jù)勾股定理即可得出答案.【詳解】解:連接EG、FG,EG、FG分別為直角△BCE、直角△BCF的斜邊中線,∵直角三角形斜邊中線長等于斜邊長的一半∴EG=FG=BC=×10=5,∵D為EF中點(diǎn)∴GD⊥EF,即∠EDG=90°,又∵D是EF的中點(diǎn),∴,在中,,故選C.【點(diǎn)睛】本題考查了直角三角形中斜邊上中線等于斜邊的一半的性質(zhì)、勾股定理以及等腰三角形三線合一的性質(zhì),本題中根據(jù)等腰三角形三線合一的性質(zhì)求得GD⊥EF是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、22°【解析】
由AE∥BD,根據(jù)平行線的性質(zhì)求得∠CBD的度數(shù),再由對頂角相等求得∠CDB的度數(shù),繼而利用三角形的內(nèi)角和等于180°求得∠C的度數(shù).【詳解】解:∵AE∥BD,∠1=130°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案為22°【點(diǎn)睛】本題考查了平行線的性質(zhì),對頂角相等及三角形內(nèi)角和定理.熟練運(yùn)用相關(guān)知識是解決問題的關(guān)鍵.12、【解析】試題解析:所以故答案為13、n(m+2)(m﹣2)【解析】
先提取公因式n,再利用平方差公式分解即可.【詳解】m2n﹣4n=n(m2﹣4)=n(m+2)(m﹣2)..故答案為n(m+2)(m﹣2).【點(diǎn)睛】本題主要考查了提取公因式法和公式法分解因式,熟練掌握平方差公式是解題關(guān)鍵14、【解析】
根據(jù)題意和函數(shù)圖象可以分別求得甲乙的速度,從而可以得到當(dāng)甲第二次與乙相遇時,乙離B地的距離.【詳解】設(shè)甲的速度為akm/h,乙的速度為bkm/h,,解得,,設(shè)第二次甲追上乙的時間為m小時,100m﹣25(m﹣1)=600,解得,m=,∴當(dāng)甲第二次與乙相遇時,乙離B地的距離為:25×(-1)=千米,故答案為.【點(diǎn)睛】本題考查一次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.15、25°【解析】
連接BC,BD,根據(jù)直徑所對的圓周角是直角,得∠ACB=90°,根據(jù)同弧或等弧所對的圓周角相等,得∠ABD=∠CBD,從而可得到∠BAD的度數(shù).【詳解】如圖,連接BC,BD,∵AB為⊙O的直徑,∴∠ACB=90°,∵∠CAB=40°,∴∠ABC=50°,∵,∴∠ABD=∠CBD=∠ABC=25°,∴∠CAD=∠CBD=25°.故答案為25°.【點(diǎn)睛】本題考查了圓周角定理及直徑所對的圓周角是直角的知識點(diǎn),解題的關(guān)鍵是正確作出輔助線.16、12π.【解析】試題分析:根據(jù)圓錐的底面半徑為2,母線長為6,直接利用圓錐的側(cè)面積公式求出它的側(cè)面積.解:根據(jù)圓錐的側(cè)面積公式:πrl=π×2×6=12π,故答案為12π.考點(diǎn):圓錐的計算.三、解答題(共8題,共72分)17、(1)80,135°,條形統(tǒng)計圖見解析;(2)825人;(3)圖表見解析,(抽到1男1女).【解析】試題分析:(1)、根據(jù)“中”的人數(shù)和百分比得出總?cè)藬?shù),然后求出優(yōu)所占的百分比,得出圓心角的度數(shù);(2)、根據(jù)題意得出“良”和“優(yōu)”兩種所占的百分比,從而得出全校的總數(shù);(3)、根據(jù)題意利用列表法或者樹狀圖法畫出所有可能出現(xiàn)的情況,然后根據(jù)概率的計算法則求出概率.試題解析:(1)80,135°;條形統(tǒng)計圖如圖所示(2)該校對安全知識達(dá)到“良”程度的人數(shù):(人)(3)解法一:列表如下:所有等可能的結(jié)果為20種,其中抽到一男一女的為12種,所以(抽到1男1女).女1女2女3男1男2女1---女2女1女3女1男1女1男2女1女2女1女2---女3女2男1女2男2女2女3女1女3女2女3---男1女3男2女3男1女1男1女2男1女3男1---男2男1男2女1男2女2男2女3男2男1男2---解法二:畫樹狀圖如下:所有等可能的結(jié)果為20種,其中抽到一男一女的為12種,所以(抽到1男1女).18、(1)y=﹣x2﹣2x+1;(2)(﹣,)【解析】
(1)將A(-1,0),B(0,1),C(1,0)三點(diǎn)的坐標(biāo)代入y=ax2+bx+c,運(yùn)用待定系數(shù)法即可求出此拋物線的解析式;(2)先證明△AOB是等腰直角三角形,得出∠BAO=45°,再證明△PDE是等腰直角三角形,則PE越大,△PDE的周長越大,再運(yùn)用待定系數(shù)法求出直線AB的解析式為y=x+1,則可設(shè)P點(diǎn)的坐標(biāo)為(x,-x2-2x+1),E點(diǎn)的坐標(biāo)為(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+)2+,根據(jù)二次函數(shù)的性質(zhì)可知當(dāng)x=-時,PE最大,△PDE的周長也最大.將x=-代入-x2-2x+1,進(jìn)而得到P點(diǎn)的坐標(biāo).【詳解】解:(1)∵拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(﹣1,0),B(0,1),C(1,0),∴,解得,∴拋物線的解析式為y=﹣x2﹣2x+1;(2)∵A(﹣1,0),B(0,1),∴OA=OB=1,∴△AOB是等腰直角三角形,∴∠BAO=45°.∵PF⊥x軸,∴∠AEF=90°﹣45°=45°,又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PE越大,△PDE的周長越大.設(shè)直線AB的解析式為y=kx+b,則,解得,即直線AB的解析式為y=x+1.設(shè)P點(diǎn)的坐標(biāo)為(x,﹣x2﹣2x+1),E點(diǎn)的坐標(biāo)為(x,x+1),則PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+)2+,所以當(dāng)x=﹣時,PE最大,△PDE的周長也最大.當(dāng)x=﹣時,﹣x2﹣2x+1=﹣(﹣)2﹣2×(﹣)+1=,即點(diǎn)P坐標(biāo)為(﹣,)時,△PDE的周長最大.【點(diǎn)睛】本題是二次函數(shù)的綜合題型,其中涉及到的知識點(diǎn)有運(yùn)用待定系數(shù)法求二次函數(shù)、一次函數(shù)的解析式,等腰直角三角形的判定與性質(zhì),二次函數(shù)的性質(zhì),三角形的周長,綜合性較強(qiáng),難度適中.19、(1)D、E、F三點(diǎn)是同在一條直線上.(2)6x2﹣13x+6=1.【解析】(1)利用切線長定理及梅氏定理即可求證;(2)利用相似和韋達(dá)定理即可求解.解:(1)結(jié)論:D、E、F三點(diǎn)是同在一條直線上.證明:分別延長AD、BC交于點(diǎn)K,由旁切圓的定義及題中已知條件得:AD=DK,AC=CK,再由切線長定理得:AC+CE=AF,BE=BF,∴KE=AF.∴,由梅涅勞斯定理的逆定理可證,D、E、F三點(diǎn)共線,即D、E、F三點(diǎn)共線.(2)∵AB=AC=5,BC=6,∴A、E、I三點(diǎn)共線,CE=BE=3,AE=4,連接IF,則△ABE∽△AIF,△ADI∽△CEI,A、F、I、D四點(diǎn)共圓.設(shè)⊙I的半徑為r,則:,∴,即,,∴由△AEF∽△DEI得:,∴.∴,因此,由韋達(dá)定理可知:分別以、為兩根且二次項(xiàng)系數(shù)為6的一個一元二次方程是6x2﹣13x+6=1.點(diǎn)睛:本是一道關(guān)于圓的綜合題.正確分析圖形并應(yīng)用圖形的性質(zhì)是解題的關(guān)鍵.20、斜邊和一條直角邊分別相等的兩個直角三角形全等;全等三角形的對應(yīng)角相等;兩點(diǎn)確定一條直線【解析】
利用“HL”判斷Rt△OPM≌Rt△OPN,從而得到∠POM=∠PON.【詳解】有畫法得OM=ON,∠OMP=∠ONP=90°,則可判定Rt△OPM≌Rt△OPN,所以∠POM=∠PON,即射線OP為∠AOB的平分線.故答案為斜邊和一條直角邊分別相等的兩個直角三角形全等;全等三角形的對應(yīng)角相等;兩點(diǎn)確定一條直線.【點(diǎn)睛】本題考查了作圖?基本作圖,解題關(guān)鍵在于熟練掌握基本作圖作一條線段等于已知線段.21、(1)24,120°;(2)見解析;(3)1000人【解析】
(1)由建模的人數(shù)除以占的百分比,求出調(diào)查的總?cè)藬?shù)即可,再算空模人數(shù),即可知道空模所占百分比,從而算出對應(yīng)的圓心角度數(shù);(2)根據(jù)空模人數(shù)然后補(bǔ)全條形統(tǒng)計圖;(3)根據(jù)隨機(jī)取出人數(shù)獲獎的人數(shù)比,即可得到結(jié)果.【詳解】解:(1)該校參加航模比賽的總?cè)藬?shù)是6÷25%=24(人),則參加空模人數(shù)為24﹣(6+4+6)=8(人),∴空模所在扇形的圓心角的度數(shù)是360°×=120°,故答案為:24,120°;(2)補(bǔ)全條形統(tǒng)計圖如下:(3)估算今年參加航模比賽的獲獎人數(shù)約是2500×=1000(人).【點(diǎn)睛】此題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,以及用樣本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《靜電紡絲法制備過渡金屬氧化物復(fù)合纖維及其電化學(xué)性能研究》
- 2024年度工程建設(shè)項(xiàng)目安全生產(chǎn)管理合同
- 2024-2030年版中國大數(shù)據(jù)金融行業(yè)發(fā)展模式及投資策略分析報告
- 2024-2030年海水潛水泵行業(yè)市場現(xiàn)狀供需分析及重點(diǎn)企業(yè)投資評估規(guī)劃分析研究報告
- 2024-2030年曳引鏈公司技術(shù)改造及擴(kuò)產(chǎn)項(xiàng)目可行性研究報告
- 2024-2030年新版中國金融電子機(jī)械項(xiàng)目可行性研究報告
- 2024年建筑物資供應(yīng)合同范本
- 2024-2030年新版中國地?zé)峁懿捻?xiàng)目可行性研究報告
- 2024-2030年工業(yè)離心鼓風(fēng)機(jī)行業(yè)市場現(xiàn)狀供需分析及重點(diǎn)企業(yè)投資評估規(guī)劃分析研究報告
- 管理學(xué)原理:控制習(xí)題與答案
- 金屬擠壓共(有色擠壓工)中級復(fù)習(xí)資料練習(xí)卷含答案
- 護(hù)患溝通情景實(shí)例
- 往復(fù)式壓縮機(jī)常見故障與排除
- 高速鐵道工程職業(yè)生涯規(guī)劃書
- 護(hù)理查房-膝痹病課件
- 圓球幕墻施工方案
- 歌劇《洪湖水浪打浪-》課件
- 現(xiàn)澆砼路緣石施工方案百度
- 大學(xué)英語四級閱讀理解精讀100篇
- 三全育人工作實(shí)施方案
評論
0/150
提交評論