




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
StorageFuturesStudy
KeyLearningsfortheComingDecades
NateBlair,ChadAugustine,WesleyCole,PaulDenholm,WillFrazier,MadelineGeocaris,JennieJorgenson,KevinMcCabe,KaraPodkaminer,AshreetaPrasanna,BenSigrin
StorageFuturesStudy
KeyLearningsfortheComingDecades
NateBlair,ChadAugustine,WesleyCole,PaulDenholm,WillFrazier,MadelineGeocaris,JennieJorgenson,KevinMcCabe,KaraPodkaminer,AshreetaPrasanna,BenSigrin
SUGGESTEDCITATION
Blair,Nate,ChadAugustine,WesleyCole,etal.2022.StorageFuturesStudy:KeyLearningsfortheComingDecades.Golden,CO:NationalRenewableEnergyLaboratory.NREL/TP-7A40-81779.
/docs/fy22osti/81779
StorageFuturesStudy:KeyLearningsfortheComingDecades|iii
NOTICE
ThisworkwasauthoredinpartbytheNationalRenewableEnergyLaboratory,operatedbyAllianceforSustainableEnergy,LLC.fortheU.S.DepartmentofEnergy(DOE)underContractNo.DE-AC36-08GO28308.SupportfortheworkwasalsoprovidedbytheInterstateRenewableEnergyCouncil,Inc.underAgreementSUB-2021-10440.TheviewsexpressedinthearticledonotnecessarilyrepresenttheviewsoftheDOEortheU.S.Government.TheU.S.Governmentretainsandthepublisher,byacceptingthearticleforpublication,acknowledgesthattheU.S.Governmentretainsanonexclusive,paid-up,irrevocable,worldwidelicensetopublishorreproducethepublishedformofthiswork,orallowotherstodoso,forU.S.Governmentpurposes.
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at
/publications.
U.S.DepartmentforEnergy(DOE)reportsproducedafter1991andagrowingnumberofpre-1991documentsareavailablefreevia
www.OSTI.gov
.
StorageFuturesStudy:KeyLearningsfortheComingDecades|iii
PREFACE
ThisreportistheseventhandfinalpublicationfromtheNationalRenewableEnergyLaboratory’s(NREL’s)StorageFuturesStudy(SFS).TheSFSisamultiyearresearchprojectthatexploreshowenergystoragecouldimpacttheevolutionandoperationoftheU.S.powersector.
Thestudyexaminedtheimpactofenergystoragetechnologyadvancementonthedeploymentofutility-scalestorageandtheadoptionofdistributedstorage,aswellasfuturepowersysteminfrastructureinvestmentandoperations.SomeofthequestionsNRELsoughttoanswerthroughoutthisstudyincluded:
?Howmightstoragecostandperformancechangeovertime?
?Whatistheroleofdiurnalenergystorageinthepowersector,evenabsentdriversorpoliciesthatincreaserenewableenergyshares?
?HowmuchdiurnalgridstoragemightbeeconomicallydeployedintheUnitedStates,bothattheutility-scaleanddistribution-scale?
?Whatfactorsmightdrivethatdeployment?
?Howmightincreasedlevelsofdiurnalstorageimpactgridoperations?
Researchfindingsandsupportingdatafromthestudyhavebeenpublishedinaseriesofsevenpublications,whicharelistedinthetableonthenextpage.Keylearningsfromthroughoutthestudyhaveculminatedinthisfinalreportthathelpsshapethevisionofenergystoragemovingforward.
TheSFSseriesprovidesdataandanalysisinsupportoftheU.S.DepartmentofEnergy’s(DOE’s)
EnergyStorageGrand
Challenge
,acomprehensiveprogramtoacceleratethedevelopment,commercialization,andutilizationofnext-generationenergystoragetechnologiesandsustainAmericangloballeadershipinenergystorage.TheEnergyStorageGrandChallengeemploysause-caseframeworktoensurestoragetechnologiescancost-effectivelymeetspecificneeds,anditincorporatesabroadrangeoftechnologiesinseveralcategories:electrochemical,electromechanical,thermal,flexiblegeneration,flexiblebuildings,andpowerelectronics.
Moreinformation,supportingdataassociatedwiththisreport,linkstootherreportsintheseries,andotherinformationaboutthebroaderstudyareavailableat
/analysis/storage-futures.html.
iv|StorageFuturesStudy:KeyLearningsfortheComingDecades
Table1
StorageFutureStudySeriesReports
Title
Description
RelationtoThisReport
TheFourPhasesof
Explorestherolesandopportunitiesfornew,
Providesbroadercontexton
StorageDeployment:
cost-competitivestationaryenergystorage
theimplicationsofthecostand
AFrameworkforthe
withaconceptualframeworkbasedonfour
performancecharacteristicsdiscussed
ExpandingRoleof
phasesofcurrentandpotentialfuturestorage
inthisreport,includingspecificgrid
StorageintheU.S.Power
deploymentandpresentsavaluepropositionfor
servicestheymayenableinvarious
System(Denholmetal.
energystoragethatcouldresultincost-effective
phasesofstoragedeployment.This
2020)
deploymentsreachinghundredsofgigawattsofinstalledcapacity.
frameworkissupportedbytheresultsofscenariosinthisproject.
EnergyStorage
Reviewsthecurrentcharacteristicsofa
Providesdetailedbackgroundabout
TechnologyModeling
broadrangeofmechanical,thermal,and
thebatteryandpumpedstorage
InputDataReport
electrochemicalstoragetechnologieswith
hydropowercostandperformance
(Augustineetal.2021)
applicationtothepowersector.Providescurrentandfutureprojectionsofcost,performancecharacteristics,andlocationalavailabilityofspecificcommercialtechnologiesalreadydeployed,includinglithium-ionbatterysystemsandpumpedstoragehydropower.
valuesusedasinputstothemodelingperformedinthisproject.
EconomicPotentialof
Assessestheeconomicpotentialforutility-scale
Thisreportfeaturesaseriesofcost-
DiurnalStorageinthe
diurnalstorageandtheeffectsthatstorage
drivengrid-scalecapacityexpansion
U.S.PowerSector(Frazier
capacityadditionscouldhaveonpowersystem
scenariosfortheU.S.gridthrough2050
etal.2021)
evolutionandoperations.
andexaminesthedriversforstoragedeployment.
DistributedStorage
Assessesthecustomeradoptionofdistributed
Analyzesdistributedstorageadoption
CustomerAdoption
diurnalstorageforseveralfuturescenariosand
scenariostotestthevariouscost
Scenarios(Prasannaet
theimplicationsforthedeploymentofdistributed
trajectoriesandassumptionsinparallel
al.2021)
generationandpowersystemevolution.
tothegridstoragedeployments
modeledinthisreport.
TheChallengesof
Describesthechallengeofasingleuniform
Advancesdialoguearoundthemeaning
DefiningLong-Duration
definitionforlong-durationenergystorageto
oflong-durationenergystorageand
EnergyStorage
reflectbothdurationandapplicationofthe
howitfitsintofuturepowersystems.
(Denholmetal.2021)
storedenergy.
GridOperational
Assessestheoperationandassociatedvalue
Considerstheoperationalimplicationsof
Implicationsof
streamsofenergystorageforseveralpower
storagedeploymentandgridevolution
WidespreadStorage
systemevolutionscenariosandexplores
scenariostoexamineandexpandonthe
Deployment(Jorgenson
theimplicationsofseasonalstorageongrid
grid-scalescenarioresultsfoundwith
etal.2022)
operations.
NREL’sRegionalEnergyDeploymentSystemmodelinthisreport.
StorageFuturesStudy:
Synthesizesandsummarizesfindingsfromthe
Thisreport.
KeyLearningsForthe
entireseriesandrelatedanalysesandreports
ComingDecades
andidentifiestopicsforfurtherresearch.
StorageFuturesStudy:KeyLearningsfortheComingDecades|v
ACKNOWLEDGMENTS
WewouldliketoacknowledgethecontributionsoftheentireStorageFuturesStudyteam(listedascoauthors)forthisreport,aswellasourDOEOfficeofStrategicAnalysiscolleaguesascorecontributors,specificallyKaraPodkaminer,PaulSpitsen,andSarahGarman.FeedbackandcontributionsalsocamefromotherNRELstaff,includingGianPorro,DougArent,KarlynnCory,AdamWarren,ChadHunter,EvanReznicek,MichaelPenev,GregStark,VigneshRamasamy,DavidFeldman,GregBrinkman,andTrieuMai.Wealsowouldliketothankourtechnicalreviewcommittee(seeTable2)fortheirinput.
Finally,weacknowledgevarioustechnicalexpertsatDOE,includingEricHsieh,AlejandroMoreno,andmanyothers,fortheiradditionalthoughtsandsuggestionsthroughouttheStorageFuturesStudy,asnotedintheindividualreports.
Table2
TechnicalReviewCommitteeMembers
DougArent
(NREL)–TRCChair
PaulAlbertus
(UniversityofMaryland)
InezAzevedo
(StanfordUniversity)
RyanWiser
(LawrenceBerkeley
NationalLaboratory)
SueBabinec(ArgonneNationalLaboratory)
AaronBloom
(NextEra)
ChrisNamovicz
(U.S.EnergyInformation
Administration)
HowardGruenspecht
(MassachusettsInstitute
ofTechnology)
ArvindJaggi
(NYIndependentSystemOperator)
KeithParks
(XcelEnergy)
KiranKumaraswamy
(Fluence)
GrangerMorgan(CarnegieMellonUniversity)
CaraMarcy
(U.S.Environmental
ProtectionAgency)
MaheshMorjaria
(TerabaseEnergy)
OliverSchmidt(ImperialCollege-London)
VincentSprenkle
(PacificNorthwest
NationalLaboratory)
JohnGavan(ColoradoPUCCommissioner)
vi|StorageFuturesStudy:KeyLearningsfortheComingDecades
LISTOF
BESS
DOE
DR
FC
GW
GWh
H2
H2Elec-saltcavern-CT
H2Elec-saltcavern-FC
kW
kWh
LIB
NG
NREL
PV
RE
SFS
VRE
ACRONYMS
—batteryenergystoragesystem(s)
—U.S.DepartmentofEnergy
—distributedresource
—fuelcell
—gigawatts
—gigawatt-hour
—hydrogen(asastoragefluid)
—hydrogenstorageusingelectrolyzers,saltcaverns,andcombustionturbines
—hydrogenstorageusingelectrolyzers,saltcaverns,andstationaryfuelcells
—kilowatt
—kilowatt-hour(eitheraunitofenergyoraunitofstoragecapacity)
—lithium-ionbattery
—naturalgas
—NationalRenewableEnergyLaboratory
—photovoltaics
—renewableenergy
—StorageFuturesStudy
—variablerenewableenergy
StorageFuturesStudy:KeyLearningsfortheComingDecades|vii
TABLEOFCONTENTS
TheComingDecadesofEnergyStorageDeployment 1
KEYLEARNING1:StorageIsPoisedforRapidGrowth 3
KEYLEARNING2:RecentStorageCostReductionsAreProjectedToContinue,withLithium-IonBattery
ContinuingToLeadinMarketShareforSomeTime 4
KEYLEARNING3:TheAbilityofStorageToProvideFirmCapacityIsaPrimaryDriver
forCost-CompetitiveDeployment 7
KEYLEARNING4:StorageIsNottheOnlyFlexibilityOption,butItsDecliningCostsHaveChanged
WhenItIsDeployedVersusOtherOptions 8
KEYLEARNING5:StorageandPVComplementEachOther 10
KEYLEARNING6:CostReductionsandtheValueofBackupPowerIncreasetheAdoptionof
Building-levelStorage 12
KEYLEARNING7:StorageDurationsWillLikelyIncreaseasDeploymentsIncrease 13
KEYLEARNING8:SeasonalStorageTechnologiesBecomeEspeciallyImportantfor100%
CleanEnergySystems 14
ConclusionsandRemainingUncertainties 16
References 18
viii|StorageFuturesStudy:KeyLearningsfortheComingDecades
LISTOFFIGURES
Figure1.Nationalstoragecapacityinthereferencecasegrowstoabout200GWby2050,
deployingarangeofdurations(left)
3
Figure2.Lithium-ionbatterypackcostshavedroppedbymorethan80%overthepastdecadeand
areexpectedtocontinuetofallbasedoncontinuedscaleofproduction,drivenlargelybyelectric
vehicledemand
4
Figure3.Theutility-scaleBESSReferenceScenarioprojectscontinuedcostreductions 5
Figure4.Capitalcostforenergy($/kWh)versuscapitalcostforcapacity($/kW)
forvarioustechnologies
6
Figure5.Restrictingservicesthatstoragecanprovideshowscapacityservicesaremoreimportant
thantime-shiftingoroperatingreservestoachievestorage’smaximumpotential 7
Figure6.Theflexibilitysupplycurve
8
Figure7.Increasingloadflexibilityandresponsivedemandreducestheneedforstorage
capacityin2050forthelowREcostandlowRE/batterycostscenarioswithandwithout
highdemandresponsecontribution
9
Figure8.IncreaseddeploymentofPVdemonstratesthereduceddurationofnetloadpeaks 10
Figure9.IncreaseddeploymentofPVdemonstratesthereduceddurationrequiredfor
energystoragetoprovidefirmcapacity
10
Figure10.Nationalpeakingcapacitypotentialfordiurnalstorage(upto12hours)asafunction
ofPVcontribution(left)andnationaldiurnalenergytime-shiftingpotentialasafunction
ofPVcontribution(right)
11
Figure11.Storagecapacityasafunctionofrenewableenergycontribution(%) 11
Figure12.Projectedadoptionofdistributedstorage(GWof2-hourdurationstoragesystemscoupledwith
PV)increasesovertimeascostsdecrease,withasignificantjumpiftherearebreakthroughPVcosts 12
Figure13.Asstoragedeploymentincreases,thenetloadpeakwidens,requiringlonger-duration
storagetoprovidefirmcapacity
13
Figure14.Theaveragedurationofnewstoragedeploymentsincreasesasthetotalamountof
storagecapacitygrows,uptoapproximately200GW(usingreferencestoragecosts) 13
Figure15.Seasonalmismatchofrenewableenergysupplyandelectricitydemand
demonstratesthepotentialopportunityforseasonalstorage
14
Figure16.Capacityandgenerationin2050forthescenariosthatreachthe100%requirement 15
LISTOFTABLES
Table1.StorageFutureStudySeriesReports
v
Table2.TechnicalReviewCommitteeMembers
vi
StorageFuturesStudy:KeyLearningsfortheComingDecades|ix
THECOMINGDECADESOFENERGYSTORAGEDEPLOYMENT
Energystorageisverylikelytobecomeacriticalelementofalow-carbon,flexible,resilientfutureelectricgrid.
Inthepastseveralyears,therehasbeenadramaticincreaseofvariablerenewablegenerationintheU.S.powersector,andsignificantgrowthisanticipatedinthefuture.Inaddition,therehasbeenincreasedfocusintheUnitedStatesandgloballyonaddressingnumerousinstancesofpowersystemdisruptionsandincreasedfocusonresearchandanalysisonpowersystemreliabilityandresiliencywithincreasingamountsofvariablerenewablepower—emphasizingtheimportanceofcleanenergydeploymentwhilemaintainingareliablepowersystem.
Atthesametime,therehavebeensignificantcostdeclinesinenergystoragetechnologies(particularlybatteries)overthepastfewyears,andmanymorestoragetechnologiesareunderdevelopment.Theseconvergingfactorshaveincreasedattentiononthepotentialroleofenergystorageasacriticalassetfordecarbonizationandtoensurereliableelectricityfortheevolvinggrid.
Energystorageoffersmanypotentialbenefitstothegrid.ItcouldprovidegenerationtocomplementthedeploymentofwindandsolarPV,providingcapacitywhentheseresourceshavereducedavailability.Whenusedinconjunctionwithrenewableenergy(RE)orothercleanenergyresources,energystoragehastheabilitytoreducegreenhousegasemissions.
Energystoragecanalsoincreaseutilizationofnewandexistingtransmissionlines,whileoffsettingtheneedtobuildnewpowerplantstoprovidepeakingcapacityoroperatingreserves.Finally,distributedenergystoragecanreducestressonthedistributiongridduringpeakdemandtimes.Thisflexibilitywillbeimportantwiththeanticipatedproliferationofelectricvehiclesandpotentialincreasedloadfromotherend-useelectrification.
Asthecostofenergystoragetechnologiescontinuestodeclineandthegridintegratesmorevariablerenewablegeneration,ourmodelingindicatessignificantincreaseddeploymentofenergystoragedeploymentintheelectricsysteminthecomingdecades.Questionsarise,suchashowcouldthisimpacthowthegridoperatesandevolvesoverthecomingdecades?
Becauseenergystoragecanimpactfeaturesofelectricitygeneration,transmission,anddistribution,quantifyingthevalueofstorageismorecomplicatedthanquantifyingthevalueofotherassetslikesolarPVorwindenergythatarepurelygeneration.ThroughtheStorageFuturesStudy(SFS),theNationalRenewableEnergyLaboratory(NREL)hasaimedtoincreaseunderstandingofhowstorageaddsvalue,andhowmuch,tothepowersystem,howmuchstoragecouldbeeconomicallydeployed,andhowthatdeploymentmightimpactpowersystemevolutionandoperations.
TheStorageFuturesStudystartedwithdefining
aframeworkoffourphasesofincreasingenergy
storagedeploymentanddurationovertime,moved
1|StorageFuturesStudy:KeyLearningsfortheComingDecades
StorageFuturesStudy:KeyLearningsfortheComingDecades|2
ontocreateasetoflong-termprojectionsfordiurnal(<12hours)storagedeploymentintheUnitedStates,andthenapplieddetailedproductioncostandagent-basedmodelingtobetterunderstandtheroleofstorage.Thekeyconclusionoftheresearchisthatdeploymentofenergystoragehasthepotentialtoincreasesignificantly—reachingatleastfivetimestoday’scapacityby2050—anditwillplayanintegral
roleindeterminingthecost-optimalgridmixofthefuture.DrawingontheanalysisacrosstheSFS,previouswork,andadditionalanalysisforthisreport,thestudyidentifiedeightspecifickeylearningsaboutthefutureofenergystorageanditsimpactonthepowersystem.Thesekeylearningscanhelppolicymakers,technologydevelopers,andgridoperatorsprepareforthecomingwaveofstoragedeployment:
KEYLEARNING1:
Storageispoisedforrapidgrowth.
KEYLEARNING2:
Recentstoragecostreductionsareprojectedtocontinue,withlithium-ionbatteries(LIBs)continuingtoleadinmarketshareforsometime.
KEYLEARNING3:
Theabilityofstoragetoprovidefirmcapacityisaprimarydriverofcost-competitivedeployment.
KEYLEARNING4:
Storageisnottheonlyflexibilityoption,butitsdecliningcostshavechangedwhenitisdeployedversusotheroptions.
KEYLEARNING5:
Storageandphotovoltaics(PV)complementeachother.
KEYLEARNING6:
Costreductionsandthevalueofbackuppowerincreasetheadoptionofbuilding-levelstorage.OPTIONOFBUILDING-LEVELSTORAGE.
KEYLEARNING7:
Storagedurationswilllikelyincreaseasdeploymentsincrease.
KEYLEARNING8:
Seasonalstoragetechnologiesbecomeespeciallyimportantfor100%cleanenergysystems.
Eachofthefollowingsectionsprovidesadditionalinsightsintotheeightkeylearnings,andweconcludewithremaininguncertaintiesthatcouldbeexploredtofurtheradvanceunderstandingoftheroleofstorageintheevolvingU.S.powergrid.
KEYLEARNING1
StorageIsPoisedforRapidGrowth
TheSFSreportEconomicPotentialofDiurnalStorageintheU.S.PowerSector(Frazieretal.2021)demonstratesthegrowingcost-competitivenessofenergystorage.Usingastate-of-the-artnational-scalecapacityexpansionmodel,wefindthatdiurnalstorage(<12hoursofduration)iseconomicallycompetitiveacrossavarietyofscenarioswitharangeofcostandperformanceassumptionsforstorage,wind,solarPV,andnaturalgas(NG).
Figure1illustratesthatacrossallscenarios,deploymentsofnewstoragerangesfrom100to650gigawatts(GW)ofnewcapacity.
Thislargerangeisdrivenbyavarietyoffactors,includingstoragecosts(KeyLearning2),naturalgasprices,andrenewableenergycostadvancement,buteventhemostconservativecaserepresentsafivefoldincreasecomparedtotheinstalledstoragecapacityof23GWin2020(themajorityofwhichispumpedstoragehydropower).
Itisimportanttonotethatsignificantdeploymentsofbothrenewableenergyandstoragearedeployedevenwithoutadditionalcarbonpolicies,demonstratingtheirincreasingcost-competitivenessasresourcesforprovisionofenergyandcapacityservices.
Modeledscenariosresultinsignificant,butnotcomplete,decarbonization,wherepowersectoremissionsarereducedby46%–82%comparedto2005,andvariablerenewableenergy(VRE)reachessharesof43%–81%nationallyby2050.Durationswith4–6hoursarethemostcommon,drivenbytheinherentsynergywithPV(KeyLearning5),butlongerdurationsareoftendeployedinthelatermodeledyears(KeyLearning7).TheprimarydriversbehindstoragegrowthandtheevolutionofstoragedevelopmentwereexploredinFrazieretal.(2021)andotherSFSreports—ashighlightedinthefollowingkeylearnings.
Figure1.Nationalstoragecapacityinthereferencecasegrowstoabout200GWby2050,deployingarangeofdurations(left)Thistranslatestoabout1,200gigawatt-hours(GWh)ofstoredenergy(right),withawiderangeofdeployments.
3|StorageFuturesStudy:KeyLearningsfortheComingDecades
StorageFuturesStudy:KeyLearningsfortheComingDecades|4
KEYLEARNING2
RecentStorageCostReductionsAreProjectedToContinue,with
Lithium-IonBatteryContinuingToLeadinMarketShareforSomeTime
TheSFSreportEnergyStorageTechnologyModelingInputDataReportdiscussesthefuturecostprojectionsforutility-scalebatteryenergystoragesystemsandothertechnologiesthatdrivemuchoftheanticipatedgrowthidentifiedinKeyLearning1.
Mostofthestationarystoragedeploymentsthatwilloccurintheneartermareexpectedtobeintheformofbatteries,particularlyLIBs.ThedominanceofLIBs,atleast
inthenearterm,hasbeendrivenbygrowthofthistechnologyacrossmultiplemarkets,includingconsumerelectronics,stationaryapplications,andespeciallyelectricvehicles.
Figure2providesanexampleofhistoricalandprojectedfuturecostsoflithium-ionbatterypacks,illustratingarapiddeclineinrecentyears.Thechartalsoshowsthevastmajorityofbatterydeploymentsarefortransportationapplications,whichwill
likelybethemostimportantdriversofbatterytechnologydevelopmentandbatterycostdeclinesingeneral.
Weusedavarietyoffuturecostprojectionsforutility-scalestationarybatteryenergystoragesystems(BESS)toevaluatetotalsystemcost,includinginverter,balanceofsystem,andinstallation.Anexampleofacostprojectionforbatterieswith2–10hoursofusabledurationthatisusedintheSFSreferencescenarioisshowninFigure3.
Figure2.Lithium-ionbatterypackcostshavedroppedbymorethan80%overthepastdecadeandareexpectedto
continuetofallbasedoncontinuedscaleofproduction,drivenlargelybyelectricvehicledemand.
2021valuesfromBloombergNEF3are$132/kW.DataSource:FrithandGoldie-Scot2019
3“BatteryPackPricesFalltoanAverageof$132/kWh,ButRisingCommodityPricesStarttoBite,”BloombergNEF,November30,2021,
/blog/
battery-pack-prices-fall-to-an-average-of-132-kwh-but-rising-commodity-prices-start-to-bite/
.
Figure3.Theutility-scaleBESSReferenceScenarioprojectscontinuedcostreductions.Theleftpanelmeasurescostona$/kWh(usableenergy)basis,whiletherightpanelmeasurescostsbasedon$/kW(maximumdirectcurrent[DC]outputpower).Projectionsassumea60-megawattDCproject.
Theleftcurveshowsthetotalcostperinstalledkilowatt-hour(kWh)ofusablecapacity,whichisacommonmeasureusedinthebatteryindustry.Thisisthetotalcostofinstallation,whichforstationaryapplicationsincludesboththepower-relatedcosts(associatedwiththeequipmentthatconvertsgridelectricityintostoredelectricityandbackagain)andtheenergy-relatedcosts(thestoragemedium).Thepower-relatedcoststypicallydonotscalewithduration,meaningtheyarethesamefora2-hoursystemanda10-hoursystem,whichiswhythecostsperkWhdecreaseasdurationincreases(powercostsaredividedoveralargernumberofkWh).(ThisbreakdownofcostsforpoweranddurationisillustratedinFigure4.)Therightcurveshowsthecostperkilowatt(kW),whichisamoreconventionalmeasureofpowerplantcostsusedintheutilityindustry.Bythismeasure,costsin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 室內消防箱管理制度
- 家委會經費管理制度
- 庫房紅黃線管理制度
- 強化對餐廳管理制度
- 影像科衛(wèi)生管理制度
- 微信工作群管理制度
- 德智體美勞管理制度
- 快餐店前廳管理制度
- 性傳播疾病管理制度
- 患者床頭卡管理制度
- 偉大的《紅樓夢》智慧樹知到期末考試答案章節(jié)答案2024年北京大學
- 《有機波譜分析》期末考試試卷及參考答案
- 公路工程基本建設項目概算、預算編制辦法
- 最詳細的整車開發(fā)流程
- 部編版七年級歷史(下)材料論述題專項訓練
- 年產1000噸乳酸的生產工藝設計
- 博克服裝CAD制版說明操作手冊(共95頁)
- 光電效應測普朗克常數(shù)-實驗報告
- (完整word版)數(shù)據模型與決策課程案例分析
- 自制桁架移動式操作平臺施工方案
- 物業(yè)服務參與校園文化建設及舉辦大型活動配合措施
評論
0/150
提交評論