高二的數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)_第1頁(yè)
高二的數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)_第2頁(yè)
高二的數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)_第3頁(yè)
高二的數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)_第4頁(yè)
高二的數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第第頁(yè)高二的數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)高二的數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)1

考點(diǎn)一:向量的概念、向量的基本定理

【內(nèi)容解讀】了解向量的實(shí)際背景,掌控向量、零向量、平行向量、共線向量、單位向量、相等向量等概念,理解向量的幾何表示,掌控平面對(duì)量的基本定理。

留意對(duì)向量概念的理解,向量是可以自由移動(dòng)的,平移后所得向量與原向量相同;兩個(gè)向量無(wú)法比較大小,它們的??杀容^大小。

考點(diǎn)二:向量的運(yùn)算

【內(nèi)容解讀】向量的運(yùn)算要求掌控向量的加減法運(yùn)算,會(huì)用平行四邊形法那么、三角形法那么進(jìn)行向量的加減運(yùn)算;掌控實(shí)數(shù)與向量的積運(yùn)算,理解兩個(gè)向量共線的含義,會(huì)判斷兩個(gè)向量的平行關(guān)系;掌控向量的數(shù)量積的運(yùn)算,體會(huì)平面對(duì)量的數(shù)量積與向量投影的關(guān)系,并理解其幾何意義,掌控?cái)?shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面對(duì)量積的運(yùn)算,能運(yùn)用數(shù)量積表示兩個(gè)向量的夾角,會(huì)用向量積判斷兩個(gè)平面對(duì)量的垂直關(guān)系。

【命題規(guī)律】命題形式主要以選擇、填空題型涌現(xiàn),難度不大,考查重點(diǎn)為模和向量夾角的定義、夾角公式、向量的坐標(biāo)運(yùn)算,有時(shí)也會(huì)與其它內(nèi)容相結(jié)合。

考點(diǎn)三:定比分點(diǎn)

【內(nèi)容解讀】掌控線段的定比分點(diǎn)和中點(diǎn)坐標(biāo)公式,并能嫻熟應(yīng)用,求點(diǎn)分有向線段所成比時(shí),可借助圖形來(lái)援助理解。

【命題規(guī)律】重點(diǎn)考查定義和公式,主要以選擇題或填空題型涌現(xiàn),難度一般。由于向量應(yīng)用的廣泛性,常常也會(huì)與三角函數(shù),解析幾何一并考查,假設(shè)涌現(xiàn)在解答題中,難度以中檔題為主,間或也以難度略高的題目。

考點(diǎn)四:向量與三角函數(shù)的綜合問(wèn)題

【內(nèi)容解讀】向量與三角函數(shù)的綜合問(wèn)題是高考常常涌現(xiàn)的問(wèn)題,考查了向量的知識(shí),三角函數(shù)的知識(shí),達(dá)到了高考中試題的掩蓋面的要求。

【命題規(guī)律】命題以三角函數(shù)作為坐標(biāo),以向量的坐標(biāo)運(yùn)算或向量與解三角形的內(nèi)容相結(jié)合,也有向量與三角函數(shù)圖象平移結(jié)合的問(wèn)題,屬中檔偏易題。

考點(diǎn)五:平面對(duì)量與函數(shù)問(wèn)題的交匯

【內(nèi)容解讀】平面對(duì)量與函數(shù)交匯的問(wèn)題,主要是向量與二次函數(shù)結(jié)合的問(wèn)題為主,要留意自變量的取值范圍。

【命題規(guī)律】命題多以解答題為主,屬中檔題。

考點(diǎn)六:平面對(duì)量在平面幾何中的應(yīng)用

【內(nèi)容解讀】向量的坐標(biāo)表示事實(shí)上就是向量的代數(shù)表示.在引入向量的坐標(biāo)表示后,使向量之間的運(yùn)算代數(shù)化,這樣就可以將“形”和“數(shù)”緊密地結(jié)合在一起.因此,很多平面幾何問(wèn)題中較難解決的問(wèn)題,都可以轉(zhuǎn)化為大家熟識(shí)的代數(shù)運(yùn)算的論證.也就是把平面幾何圖形放到適當(dāng)?shù)淖鴺?biāo)系中,給予幾何圖形有關(guān)點(diǎn)與平面對(duì)量詳細(xì)的坐標(biāo),這樣將有關(guān)平面幾何問(wèn)題轉(zhuǎn)化為相應(yīng)的代數(shù)運(yùn)算和向量運(yùn)算,從而使問(wèn)題得到解決.

【命題規(guī)律】命題多以解答題為主,屬中等偏難的試題。

高二的數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)2

一般地,設(shè)一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),假如每次抽取時(shí)總體內(nèi)的.各個(gè)個(gè)體被抽到的機(jī)會(huì)都相等,就把這種抽樣方法叫做簡(jiǎn)約隨機(jī)抽樣。

簡(jiǎn)約隨機(jī)抽樣的特點(diǎn):

(1)用簡(jiǎn)約隨機(jī)抽樣從含有N個(gè)個(gè)體的總體中抽取一個(gè)容量為n的樣本時(shí),每次抽取一個(gè)個(gè)體時(shí)任一個(gè)體被抽到的概率為;在整個(gè)抽樣過(guò)程中各個(gè)個(gè)體被抽到的概率為

(2)簡(jiǎn)約隨機(jī)抽樣的特點(diǎn)是,逐個(gè)抽取,且各個(gè)個(gè)體被抽到的概率相等;

(3)簡(jiǎn)約隨機(jī)抽樣方法,表達(dá)了抽樣的客觀性與公正性,是其他更繁復(fù)抽樣方法的基礎(chǔ).

(4)簡(jiǎn)約隨機(jī)抽樣是不放回抽樣;它是逐個(gè)地進(jìn)行抽取;它是一種等概率抽樣

簡(jiǎn)約抽樣常用方法:

(1)抽簽法:先將總體中的全部個(gè)體(共有N個(gè))編號(hào)(號(hào)碼可從1到N),并把號(hào)碼寫(xiě)在外形、大小相同的號(hào)簽上(號(hào)簽可用小球、卡片、紙條等制作),然后將這些號(hào)簽放在同一個(gè)箱子里,進(jìn)行勻稱(chēng)攪拌,抽簽時(shí)每次從中抽一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本適用范圍:總體的個(gè)體數(shù)不多時(shí)優(yōu)點(diǎn):抽簽法簡(jiǎn)便易行,當(dāng)總體的個(gè)體數(shù)不太多時(shí)相宜采納抽簽法.(2)隨機(jī)數(shù)表法:隨機(jī)數(shù)表抽樣“三步曲”:第一步,將總體中的個(gè)體編號(hào);第二步,選定開(kāi)始的數(shù)字;第三步,獵取樣本號(hào)碼概率:

相關(guān)高中數(shù)學(xué)知識(shí)點(diǎn):系統(tǒng)抽樣

系統(tǒng)抽樣的概念:

當(dāng)整體中個(gè)體數(shù)較多時(shí),將整體均分為幾個(gè)部分,然后按肯定的規(guī)章,從每一個(gè)部分抽取1個(gè)個(gè)體而得到所需要的樣本的方法叫系統(tǒng)抽樣。

系統(tǒng)抽樣的步驟:

(1)采納隨機(jī)方式將總體中的個(gè)體編號(hào);

(2)將整個(gè)編號(hào)進(jìn)行勻稱(chēng)分段在確定相鄰間隔k后,假設(shè)不能勻稱(chēng)分段,即

=k不是整數(shù)時(shí),可采納隨機(jī)方法從總體中剔除一些個(gè)體,使總體中剩余的個(gè)體數(shù)N′滿意是整數(shù);

(3)在第一段中采納簡(jiǎn)約隨機(jī)抽樣方法確定第一個(gè)被抽得的個(gè)體編號(hào)l;

(4)依次將l加上ik,i=1,2,…,(n-1),得到其余被抽取的個(gè)體的編號(hào),從而得到整個(gè)樣本。

相關(guān)高中數(shù)學(xué)知識(shí)點(diǎn):分層抽樣

分層抽樣:

當(dāng)已知總體由差異明顯的幾部分組成時(shí),常將總體分成幾部分,然后根據(jù)各部分所占的比例進(jìn)行抽樣,這種抽樣叫做分層抽樣,其所分成的各個(gè)部分叫做層。

利用分層抽樣抽取樣本,每一層根據(jù)它在總體中所占的比例進(jìn)行抽取。

不放回抽樣和放回抽樣:

在抽樣中,假如每次抽出個(gè)體后不再將它放回總體,稱(chēng)這樣的抽樣為不放回抽樣;假如每次抽出個(gè)體后再將它放回總體,稱(chēng)這樣的抽樣為放回抽樣.

隨機(jī)抽樣、系統(tǒng)抽樣、分層抽樣都是不放回抽樣

分層抽樣的特點(diǎn):

(1)分層抽樣適用于差異明顯的幾部分組成的狀況;

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論