關(guān)于三角函數(shù)最大值問(wèn)題_第1頁(yè)
關(guān)于三角函數(shù)最大值問(wèn)題_第2頁(yè)
關(guān)于三角函數(shù)最大值問(wèn)題_第3頁(yè)
關(guān)于三角函數(shù)最大值問(wèn)題_第4頁(yè)
關(guān)于三角函數(shù)最大值問(wèn)題_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

關(guān)注微信公眾號(hào):高斯課堂獲取更多精品資料高中數(shù)學(xué)教研QQ群929518278精品資料每天更新關(guān)于三角函數(shù)最大值問(wèn)題本文通過(guò)研究一個(gè)最新的三角函數(shù)試題的最大值問(wèn)題,引出均值不等式在三角函數(shù)最值的應(yīng)用,進(jìn)一步提出一系列類(lèi)似問(wèn)題,再層層深入理解分析,發(fā)現(xiàn)的最大值求解過(guò)程中也可以使用均值不等式,說(shuō)明均值不等式的強(qiáng)大功能,筆者一口氣列舉數(shù)十個(gè)練習(xí)題精準(zhǔn)說(shuō)明均值不等式在求解最值問(wèn)題中的應(yīng)用廣泛性。同時(shí),所列舉的問(wèn)題盡量避免多重根式,所選問(wèn)題盡量使得結(jié)果簡(jiǎn)單,形式優(yōu)美。一、三角函數(shù)最值問(wèn)題在表達(dá)式有意義的條件下求函數(shù)的最值。例題1.若實(shí)數(shù)滿足則代數(shù)式的最大值是.答案是:解題分析:變式:求函數(shù)的最大值.解:.當(dāng)且僅當(dāng)時(shí),取得最大值1.實(shí)質(zhì)上,本題對(duì)應(yīng)的函數(shù)最值問(wèn)題是求的最大值,令代入化簡(jiǎn)就得本題問(wèn)題。2.通過(guò)一定得研究發(fā)現(xiàn),形如的最大值問(wèn)題有如下幾個(gè)例題,所求結(jié)果是所含根號(hào)個(gè)數(shù)較少的形式,且看以下幾個(gè)例題,問(wèn)題的解答方法與例題1類(lèi)似:例題2~例題7的答案提示:二、由形到本質(zhì)的研究我們?cè)龠M(jìn)一步研究含有兩個(gè)倍角關(guān)系的三角函數(shù)最大值問(wèn)題發(fā)現(xiàn),可以提出一系列含有根式的最值問(wèn)題,的最大值.比如,從最簡(jiǎn)單情況研究,賦值系數(shù)為1,引入例題8,例題8:求函數(shù)的最大值.解:本題可以三角換元,設(shè),代入函數(shù)關(guān)系求值,這里為了突出均值不等式的應(yīng)用,直接使用均值不等式,仿照以上兩個(gè)例子使用均值不等式求出序列號(hào)為[1]~[1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論