![2023考研數(shù)學(xué)線性代數(shù)必備知識(shí)點(diǎn)_第1頁](http://file4.renrendoc.com/view/2d4ee1660de95d5ab70c71c54517b499/2d4ee1660de95d5ab70c71c54517b4991.gif)
![2023考研數(shù)學(xué)線性代數(shù)必備知識(shí)點(diǎn)_第2頁](http://file4.renrendoc.com/view/2d4ee1660de95d5ab70c71c54517b499/2d4ee1660de95d5ab70c71c54517b4992.gif)
![2023考研數(shù)學(xué)線性代數(shù)必備知識(shí)點(diǎn)_第3頁](http://file4.renrendoc.com/view/2d4ee1660de95d5ab70c71c54517b499/2d4ee1660de95d5ab70c71c54517b4993.gif)
![2023考研數(shù)學(xué)線性代數(shù)必備知識(shí)點(diǎn)_第4頁](http://file4.renrendoc.com/view/2d4ee1660de95d5ab70c71c54517b499/2d4ee1660de95d5ab70c71c54517b4994.gif)
![2023考研數(shù)學(xué)線性代數(shù)必備知識(shí)點(diǎn)_第5頁](http://file4.renrendoc.com/view/2d4ee1660de95d5ab70c71c54517b499/2d4ee1660de95d5ab70c71c54517b4995.gif)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第頁共頁2023考研數(shù)學(xué)線性代數(shù)必備知識(shí)點(diǎn)2023考研數(shù)學(xué)線性代數(shù)必備知識(shí)點(diǎn)2023年研究生備考的硝煙還未散盡時(shí),另一場戰(zhàn)役已經(jīng)打響。在考研數(shù)學(xué)的三門課里,線性代數(shù)這門課的特點(diǎn)又是什么呢?線性代數(shù)這門課對(duì)考生的抽象才能的要求特別的高,大綱要求主要考察的有抽象行列式的計(jì)算,抽象矩陣求逆,抽象矩陣求秩,抽象行列式求特征值與特征向量,這四種抽象題型是考研線性代數(shù)每年常出題型,占有很大比重,要求同學(xué)們有較高的綜合才能。線性代數(shù)的前后知識(shí)的連續(xù)性強(qiáng)完全是由它自身的知識(shí)體系和邏輯推理方式來決定的,很多同學(xué)也都說線性代數(shù)的公式概念結(jié)論特別的多,前后聯(lián)絡(luò)特別的嚴(yán)密,在做一個(gè)題時(shí),假設(shè)有一個(gè)公式或者結(jié)論不知道,后面的過程就無法做下去,其實(shí)這也符合考研大綱的要求的考生運(yùn)用所學(xué)的知識(shí)分析問題和解決問題的才能。假設(shè)和高等數(shù)學(xué)做個(gè)比較,我們把高等數(shù)學(xué)看作是一個(gè)連續(xù)性的推理過程,線性代數(shù)就是一個(gè)跳躍性的推理過程,在做題時(shí)表現(xiàn)的會(huì)很明顯。同學(xué)們在做高等數(shù)學(xué)的題時(shí),從第一步到第二步到第三步在數(shù)學(xué)式子上一個(gè)一個(gè)等下去很明晰,但是同學(xué)們在做線性代數(shù)的題目時(shí)從第一步到第二步到第三步經(jīng)常在數(shù)學(xué)式子上看不出來,比方行列式的計(jì)算,從第幾行(或列)加到哪行(列)很多時(shí)候很難一下子看出來。針對(duì)上述特點(diǎn),給出線性代數(shù)的各章節(jié)重要知識(shí)點(diǎn)詳細(xì)復(fù)習(xí)建議,希望同學(xué)們的復(fù)習(xí)可以有的放矢。一、行列式與矩陣行列式、矩陣是線性代數(shù)中的根底章節(jié),從命題人的角度來看,可以像光滑油一般結(jié)合其它章節(jié)出題,因此必須純熟掌握。行列式的核心內(nèi)容是求行列式——詳細(xì)行列式的計(jì)算和抽象行列式的計(jì)算。其中詳細(xì)行列式的計(jì)算又有低階和高階兩種類型,主要方法是應(yīng)用行列式的性質(zhì)及按行(列)展開定理化為上下三角行列式求解;而對(duì)于抽象行列式而言,考點(diǎn)不在如何求行列式,而在于結(jié)合后面章節(jié)內(nèi)容的相對(duì)綜合的題。矩陣部分出題很靈敏,頻繁出現(xiàn)的知識(shí)點(diǎn)包括矩陣各種運(yùn)算律、矩陣的根本性質(zhì)、矩陣可逆的斷定及求逆、矩陣的`秩、初等矩陣等。二、向量與線性方程組向量與線性方程組是整個(gè)線性代數(shù)部分的核心內(nèi)容。相比之下,行列式和矩陣可視作是為了討論向量和線性方程組部分的問題而做鋪墊的根底性章節(jié),而其后兩章特征值和特征向量、二次型的內(nèi)容那么相對(duì)獨(dú)立,可以看作是對(duì)核心內(nèi)容的擴(kuò)展。向量與線性方程組的內(nèi)容聯(lián)絡(luò)很親密,很多知識(shí)點(diǎn)互相之間都有或明或暗的相關(guān)性。復(fù)習(xí)這兩部分內(nèi)容最有效的方法就是徹底理順諸多知識(shí)點(diǎn)之間的內(nèi)在聯(lián)絡(luò),因?yàn)檫@樣做首先可以保證做到真正意義上的理解,同時(shí)也是純熟掌握和靈敏運(yùn)用的前提。這部分的重要考點(diǎn)一是線性方程組所具有的兩種形式——矩陣形式和向量形式;二是線性方程組與向量以及其它章節(jié)的各種內(nèi)在聯(lián)絡(luò)。(1)齊次線性方程組與向量線性相關(guān)、無關(guān)的聯(lián)絡(luò)齊次線性方程組可以直接看出一定有解,因?yàn)楫?dāng)變量都為零時(shí)等式一定成立——印證了向量部分的一條性質(zhì)“零向量可由任何向量線性表示”。齊次線性方程組一定有解又可以分為兩種情況:①有唯一零解;②有非零解。當(dāng)齊次線性方程組有唯一零解時(shí),是指等式中的變量只能全為零才能使等式成立,而當(dāng)齊次線性方程組有非零解時(shí),存在不全為零的變量使上式成立;但向量部分中判斷向量組是否線性相關(guān)、無關(guān)的定義也正是由這個(gè)等式出發(fā)的。故向量與線性方程組在此又產(chǎn)生了聯(lián)絡(luò)——齊次線性方程組是否有非零解對(duì)應(yīng)于系數(shù)矩陣的列向量組是否線性相關(guān)??梢栽O(shè)想線性相關(guān)、無關(guān)的概念就是為了更好地討論線性方程組問題而提出的。(2)齊次線性方程組的解與秩和極大無關(guān)組的聯(lián)絡(luò)同樣可以認(rèn)為秩是為了更好地討論線性相關(guān)和線性無關(guān)而引入的。秩的定義是“極大線性無關(guān)組中的向量個(gè)數(shù)”。經(jīng)過“秩→線性相關(guān)、無關(guān)→線性方程組解的斷定”的邏輯鏈條,就可以斷定列向量組線性相關(guān)時(shí),齊次線性方程組有非零解,且齊次線性方程組的解向量可以通過r個(gè)線性無關(guān)的解向量(根底解系)線性表示。(3)非齊次線性方程組與線性表出的聯(lián)絡(luò)非齊次線性方程組是否有解對(duì)應(yīng)于向量是否可由列向量三、特征值與特征向量相對(duì)于前兩章來說,本章不是線性代數(shù)這門課的理論重點(diǎn),但卻是一個(gè)考試重點(diǎn)。其原因是解決相關(guān)題目要用到線代中的大量內(nèi)容——既有行列式、矩陣又有線性方程組和線性相關(guān)性,“牽一發(fā)而動(dòng)全身”。本章知識(shí)要點(diǎn)如下:1.特征值和特征向量的定義及計(jì)算方法就是記牢一系列公式和性質(zhì)。2.相似矩陣及其性質(zhì),需要區(qū)分矩陣的相似、等價(jià)與合同:3.矩陣可相似對(duì)角化的條件,包括兩個(gè)充要條件和兩個(gè)充分條件。充要條件一是n階矩陣有n個(gè)線性無關(guān)的特征值;二是任意r重特征根對(duì)應(yīng)有r個(gè)線性無關(guān)的特征向量。4.實(shí)對(duì)稱矩陣及其相似對(duì)角化,n階實(shí)對(duì)稱矩陣必可正交相似于以其特征值為對(duì)角元素的對(duì)角陣。四、二次型這部分所講的內(nèi)容從根本上講是特征值和特征向量的一個(gè)延伸,因?yàn)榛?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年速凍丸類制品合作協(xié)議書
- 2025年個(gè)體診所合作協(xié)議(三篇)
- 2025年買賣別墅合同模板(三篇)
- 2025年產(chǎn)品區(qū)域代理合同協(xié)議常用版(2篇)
- 2025年產(chǎn)品設(shè)計(jì)合同(三篇)
- 2025年個(gè)人幼兒園的課題總結(jié)范文(二篇)
- 2025年個(gè)人房屋防水施工合同模板(2篇)
- 2025年it服務(wù)合同范文(2篇)
- 地鐵建設(shè)渣土運(yùn)輸服務(wù)協(xié)議
- 建材物流居間服務(wù)協(xié)議
- 城市隧道工程施工質(zhì)量驗(yàn)收規(guī)范
- 2025年湖南高速鐵路職業(yè)技術(shù)學(xué)院高職單招高職單招英語2016-2024年參考題庫含答案解析
- 2024-2025學(xué)年人教新版高二(上)英語寒假作業(yè)(五)
- 上海高考英語詞匯手冊
- 2021年江蘇省淮安市淮陰中學(xué)高一政治下學(xué)期期末試題含解析
- 公共政策工具-課件
- 石油化工、煤化工、天然氣化工優(yōu)劣勢分析
- Q∕GDW 12118.3-2021 人工智能平臺(tái)架構(gòu)及技術(shù)要求 第3部分:樣本庫格式
- 客戶的分級(jí)管理培訓(xùn)(共60頁).ppt
- 廣東省義務(wù)教育階段學(xué)生轉(zhuǎn)學(xué)轉(zhuǎn)出申請(qǐng)表(樣本)
- 如何成為一個(gè)優(yōu)秀的生產(chǎn)經(jīng)理
評(píng)論
0/150
提交評(píng)論