等比數列的前n項和_第1頁
等比數列的前n項和_第2頁
等比數列的前n項和_第3頁
等比數列的前n項和_第4頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

#等比數列的前n項和一、教材分析1.從在教材中的地位與作用來看《等比數列的前n項和》是數列這一章中的一個重要內容,它不僅在現實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數學素養(yǎng).2.從學生認知角度看從學生的思維特點看,很容易把本節(jié)內容與等差數列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導.不利因素是:本節(jié)公式的推導與等差數列前n項和公式的推導有著本質的不同,這對學生的思維是一個突破,另外,對于q=1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯.學情分析學生雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹.重點、難點教學重點:公式的推導、公式的特點和公式的運用.教學難點:公式的推導方法和公式的靈活運用.三、過程分析學生是認知的主體,設計教學過程必須遵循學生的認知規(guī)律,盡可能地讓學生去經歷知識的形成與發(fā)展過程,結合本節(jié)課的特點,我設計了如下的教學過程:1.創(chuàng)設情境,提出問題在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求.西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國王令宮廷數學家計算,結果出來后,國王大吃一驚.為什么呢?設計意圖:設計這個情境目的是在引入課題的同時激發(fā)學生的興趣,調動學習的積極性.故事內容緊扣本節(jié)課的主題與重點.此時我問:同學們,你們知道西薩要的是多少粒小麥嗎?引導學生寫出麥粒總數122223……給.帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和.這時我對他們的這種思路給予肯定.設計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學生的認知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學關鍵處學生難以轉過彎來,因而在教學中應舍得花時間營造知識形成過程的氛圍,突破學生學習的障礙.同時,形成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的新方法,為后面的教學埋下伏筆.2.師生互動,探究問題在肯定他們的思路后,我接著問:1,2,22,…,263是什么數列?有何特征?應歸結為什么數學問題呢?探討1:設s=122223…23,記為(1)式,注意觀察每一項的特征,64有何聯系?(學生會發(fā)現,后一項都是前一項的2倍)探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有2s=22223…2324,記為(2)式.比較(1)(2)兩式,64你有什么發(fā)現?設計意圖:留出時間讓學生充分地比較,等比數列前口項和的公式推導關鍵是變“加”為“減”,在教師看來這是“天經地義”的,但在學生看來卻是“不可思議”的,因此教學中應著力在這兒做文章,從而抓住培養(yǎng)學生的辯證思維能力的良好契機.經過比較、研究,學生發(fā)現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:S二264-1.老師指出:這就是錯位相減法,并64要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?設計意圖:經過繁難的計算之苦后,突然發(fā)現上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數學的興趣和學好數學的信心.3.類比聯想,解決問題這時我再順勢引導學生將結論一般設等比數列{a},首項為為公比為q,如何求前n項和s? 這里,讓學生自主完成,,并喊一名學生上黑板,然n后對個別學生進行指導.設計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感.在學生推導完成后,我再問由Q-/s=a-aqn得s=ai—aqnn1 1 n 1-q對不對?這里的q能不能等于1?等比數列中的公比能不能為1?q=1時是什么數列?此時s二?(這里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下1基礎.)再次追問:結合等比數列的通項公式a=aqn-1,如何把s用a、a、q表示出來?(引導學生得出公式的另一形式) n1 n1n設計意圖:通過反問精講,一方面使學生加深對知識的認識,完善知識結構,另一方面使學生由簡單地模仿和接受,變?yōu)閷χR的主動認識,從而進一步提高分析、類比和綜合的能力.這一環(huán)節(jié)非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用.4.討論交流,延伸拓展在此基礎上,我提出:探究等比數列前n項和公式,還有其它方法嗎?我們知道,那么我們能否利用這個關系而求出s呢銀描等國數列的定*又有TOC\o"1-5"\h\z\o"CurrentDocument"s=a+aq+aq2++aqni=a+q(a+aq++aqn-2)n1 1 1 1 14=4=4=.?.=4=q,能否聯想到等比定理從而求出sn呢?aaaa1 2 3 n-1設計意圖:以疑導思,激發(fā)學生的探索欲望,營造一個讓學生主動觀察、思考、討論的氛圍.以上兩種方法都可以化歸到S=a+qs,這其實就是關于sn1 n-1 n的一個遞推式,遞推數列有非常重要的研究價值,是研究性學習和課外拓展的極佳資源,它源于課本,又高于課本,對學生的思維發(fā)展有促進作用.5.變式訓練,深化認識例1求等比數列1,1,1,焉,…前8項和;248161、等比數列i,i,i,白,…前多少項的和是6324816 642、等比數列1,1,1,熹,…,求第5項到第10項的和.248163、等比數列1,1,1,熹,…求前2項中所有偶數項的和.24816首先,學生獨立思考,自主解題,再請學生上臺來幻燈演示他們的解答,其它同學進行評價,然后師生共同進行總結.設計意圖:采用變式教學設計題組,深化學生對公式的認識和理解,通過直接套用公式、變式運用公式、研究公式特點這三個層次的問題解決,促進學生新的數學認知結構的形成.通過以上形式,讓全體學生都參與教學,以此培養(yǎng)學生的參與意識和競爭意識..例題講解,形成技能例2:求和1+a+a2+a3+ 1-dn-l.設計意圖:解題時,以學生分析為主,教師適時給予點撥,該題有意培養(yǎng)學生對含有參數的問題進行分類討論的數學思想..總結歸納,加深理解以問題的形式出現,引導學生回顧公式、推導方法,鼓勵學生積極回答,然后老師再從知識點及數學思想方法兩方面總結.設計意圖:以此培養(yǎng)學生的口頭表達能力,歸納概括能力..故事結束,首尾呼應最后我們回到故事中的問題,我們可以計算出國王獎賞的小麥約為1.84X1019粒,大約7000億噸,用這么多小麥能從地球到太陽鋪設一條寬10米、厚8米的大道,大約是全世界一年糧食產量的459倍,顯然國王兌現不了他的承諾.設計意圖:把引入課題時的懸念給予釋疑,有助于學生克服疲倦、繼續(xù)積極思維..課后作業(yè),分層練習必做:P129練習1、2、3、4選作:思考題1求和x+2x2+3x3+—+nxn.(2)“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”這首中國古詩的答案是多少?設計意圖:出選作題的目的是注意分層教學和因材施教,讓學有余力的學生有思考的空間.四、教法分析對公式的教學,要使學生掌握與理解公式的來龍去脈,掌握公式的推導方法,理解公式的成立條件,充分體現公式之間的聯系.在教學中,我采用“問題一一探究”的教學模式,把整個課堂分為呈現問題、探索規(guī)律、總結規(guī)律、應用規(guī)律四個階段.利用多媒體輔助教學,直觀地反映了教學內容,使學生思維活動得以充分展開,從而優(yōu)化了教學過程,大大提高了課堂教學效率.五、評價分析本節(jié)課通過推導方法的研究,使學生從不同的思維角度掌握了等比數列前n項和公式.錯位相減:變加為減,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論