版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知正實數(shù)滿足,則的最小值()A.2 B.3 C.4 D.2.已知兩個球的表面積之比為,則這兩個球的體積之比為()A. B. C. D.3.總體由編號為01,02,…,60的60個個體組成,利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表第1行的第8列和第9列數(shù)字開始由左至右選取兩個數(shù)字,則選出的第5個個體的編號為()5044664429670658036980342718836146422391674325745883110330208353122847736305A.42 B.36 C.22 D.144.函數(shù)的簡圖是()A. B. C. D.5.已知函數(shù)f(x)=2x+log2x,且實數(shù)a>b>c>0,滿足A.x0<a B.x0>a6.設函數(shù)的最大值為,最小值為,則與滿足的關(guān)系是()A. B.C. D.7.一個四面體的三視圖如圖所示,則該四面體的表面積是()A. B.C. D.8.在中,角,,所對的邊分別為,,,若,則最大角的余弦值為()A. B. C. D.9.已知A(3,1),B(-1,2),若∠ACB的平分線方程為y=x+1,則AC所在的直線方程為()A.y=2x+4 B.y=x-3 C.x-2y-1=0 D.3x+y+1=010.等差數(shù)列的前項和為,若,且,則()A.10 B.7 C.12 D.3二、填空題:本大題共6小題,每小題5分,共30分。11.若,則的取值范圍是________.12.在中,,,為角,,所對的邊,點為的重心,若,則的取值范圍為______.13.方程在區(qū)間的解為_______.14.適合條件的角的取值范圍是______.15.若x、y滿足約束條件,則的最大值為________.16.數(shù)列的前項和為,若數(shù)列的各項按如下規(guī)律排列:,,,,,,,,,,…,,,…,,…有如下運算和結(jié)論:①;②數(shù)列,,,,…是等比數(shù)列;③數(shù)列,,,,…的前項和為;④若存在正整數(shù),使,,則.其中正確的結(jié)論是_____.(將你認為正確的結(jié)論序號都填上)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖所示,在三棱柱中,與都為正三角形,且平面,分別是的中點.求證:(1)平面平面;(2)平面平面.18.在中,內(nèi)角所對的邊分別為.已知,,.(Ⅰ)求和的值;(Ⅱ)求的值.19.已知集合,,求.20.在中,內(nèi)角,,所對的邊分別為,,.若.(1)求角的度數(shù);(2)當時,求的取值范圍.21.已知函數(shù)的圖象關(guān)于直線對稱,且圖象上相鄰兩個最高點的距離為.(1)求和的值;(2)當時,求函數(shù)的最大值和最小值;(3)設,若的任意一條對稱軸與x軸的交點的橫坐標不屬于區(qū)間,求c的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
,當且僅當,即,時的最小值為3.故選B.點睛:本題主要考查基本不等式.在用基本不等式求最值時,應具備三個條件:一正二定三相等.①一正:關(guān)系式中,各項均為正數(shù);②二定:關(guān)系式中,含變量的各項的和或積必須有一個為定值;③三相等:含變量的各項均相等,取得最值.2、D【解析】
根據(jù)兩個球的表面積之比求出半徑之比,利用半徑之比求出球的體積比.【詳解】由題知,則.故選:D.【點睛】本題主要考查了球體的表面積公式和體積公式,屬于基礎題.3、C【解析】
通過隨機數(shù)表的相關(guān)運算即可得到答案.【詳解】隨機數(shù)表第1行的第8列和第9列數(shù)字為42,由左至右選取兩個數(shù)字依次為42,36,03,14,22,選出的第5個個體的編號為22,故選C.【點睛】本題主要考查隨機數(shù)法,按照規(guī)則進行即可,難度較小.4、D【解析】
變形為,求出周期排除兩個選項,再由函數(shù)值正負排除一個,最后一個為正確選項.【詳解】函數(shù)的周期是,排除AB,又時,,排除C.只有D滿足.故選:D.【點睛】本題考查由函數(shù)解析式選圖象,可通過研究函數(shù)的性質(zhì)如單調(diào)性、奇偶性、周期性、對稱性等排除某些選項,還可求出特殊值,特殊點,函數(shù)值的正負,函數(shù)值的變化趨勢排除一些選項,從而得出正確選項.5、D【解析】
由函數(shù)的單調(diào)性可得:當x0<c時,函數(shù)的單調(diào)性可得:f(a)>0,f(b)>0,f(c)>0,即不滿足f(a)f(b)f(c)【詳解】因為函數(shù)f(x)=2則函數(shù)y=f(x)在(0,+∞)為增函數(shù),又實數(shù)a>b>c>0,滿足f(a)f(b)f(c)<0,則f(a),f(b),f(c)為負數(shù)的個數(shù)為奇數(shù),對于選項A,B,C選項可能成立,對于選項D,當x0函數(shù)的單調(diào)性可得:f(a)>0,f(b)>0,f(c)>0,即不滿足f(a)f(b)f(c)<0,故選項D不可能成立,故選:D.【點睛】本題考查了函數(shù)的單調(diào)性,屬于中檔題.6、B【解析】
將函數(shù)化為一個常數(shù)函數(shù)與一個奇函數(shù)的和,再利用奇函數(shù)的對稱性可得答案.【詳解】因為,令,則,所以為奇函數(shù),所以,所以,故選:B【點睛】本題考查了兩角差的余弦公式,考查了奇函數(shù)的對稱性的應用,屬于中檔題.7、B【解析】
試題分析:由三視圖可知,該幾何體是如下圖所示的三棱錐,其中平面平面,,且,,所以,與均為正三角形,且邊長為,所以,故該三棱錐的表面各為,故選B.考點:1.三視圖;2.多面體的表面積與體積.8、D【解析】
設,由余弦定理可求出.【詳解】設,所以最大的角為,故選D.【點睛】本題主要考查了余弦定理,大邊對大角,屬于中檔題.9、C【解析】設點A(3,1)關(guān)于直線的對稱點為,則,解得,即,所以直線的方程為,聯(lián)立解得,即,又,所以邊AC所在的直線方程為,選C.點睛:本題主要考查了直線方程的求法,屬于中檔題。解題時要結(jié)合實際情況,準確地進行求解。10、C【解析】
由等差數(shù)列的前項和公式解得,由,得,由此能求出的值?!驹斀狻拷猓翰顢?shù)列的前n項和為,,,解得,解得,故選:C?!军c睛】本題考查等差數(shù)列的性質(zhì)等基礎知識,考查運算求解能力,是基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用反函數(shù)的運算法則,定義及其性質(zhì),求解即可.【詳解】由,得所以,又因為,所以.故答案為:【點睛】本題考查反余弦函數(shù)的運算法則,反函數(shù)的定義域,考查學生計算能力,屬于基礎題.12、【解析】
在中,延長交于,由重心的性質(zhì),找到、和的關(guān)系,在和中利用余弦定理分別表示出和,求出,再利用余弦定理表示出,利用基本不等式和的范圍求解即可.【詳解】畫出,連接,并延長交于,因為是的重心,所以為中點,因為,所以,由重心的性質(zhì),,在中,由余弦定理得,,在中,由余弦定理得,因為,所以,又,所以,在中,由余弦定理和基本不等式,,又,所以,故.故答案為:【點睛】本題主要考查三角形重心的性質(zhì)、余弦定理解三角形和基本不等式求最值,考查學生的分析轉(zhuǎn)化能力,屬于中檔題.13、或【解析】
由題意求得,利用反三角函數(shù)求出方程在區(qū)間的解.【詳解】解:,得,,或,;方程在區(qū)間的解為:或.故答案為:或.【點睛】本題考查了三角函數(shù)方程的解法與應用問題,是基礎題.14、【解析】
根據(jù)三角函數(shù)的符號法則,得,從而求出的取值范圍.【詳解】,的取值范圍的解集為.故答案為:【點睛】本題主要考查了三角函數(shù)符號法則的應用問題,是基礎題.15、18【解析】
先作出不等式組所表示的平面區(qū)域,再觀察圖像即可得解.【詳解】解:作出不等式組所表示的平面區(qū)域,如圖所示,由圖可得:目標函數(shù)所在直線過點時,取最大值,即,故答案為:.【點睛】本題考查了簡單的線性規(guī)劃問題,重點考查了作圖能力,屬基礎題.16、①③④【解析】
根據(jù)題中所給的條件,將數(shù)列的項逐個寫出,可以求得,將數(shù)列的各項求出,可以發(fā)現(xiàn)其為等差數(shù)列,故不是等比數(shù)列,利用求和公式求得結(jié)果,結(jié)合條件,去挖掘條件,最后得到正確的結(jié)果.【詳解】對于①,前24項構(gòu)成的數(shù)列是,所以,故①正確;對于②,數(shù)列是,可知其為等差數(shù)列,不是等比數(shù)列,故②不正確;對于③,由上邊結(jié)論可知是以為首項,以為公比的等比數(shù)列,所以有,故③正確;對于④,由③知,即,解得,且,故④正確;故答案是①③④.【點睛】該題考查的是有關(guān)數(shù)列的性質(zhì)以及對應量的運算,解題的思想是觀察數(shù)列的通項公式,理解項與和的關(guān)系,認真分析,仔細求解,從而求得結(jié)果.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析.(2)見解析.【解析】
(1)由分別是的中點,證得,由線面平行的判定定理,可得平面,平面,再根據(jù)面面平行的判定定理,即可證得平面平面.(2)利用線面垂直的判定定理,可得平面,再利用面面垂直的判定定理,即可得到平面平面.【詳解】(1)在三棱柱中,因為分別是的中點,所以,根據(jù)線面平行的判定定理,可得平面,平面又,∴平面平面.(2)在三棱柱中,平面,所以,又,,所以平面,而平面,所以平面平面.【點睛】本題考查線面位置關(guān)系的判定與證明,熟練掌握空間中線面位置關(guān)系的定義、判定、幾何特征是解答的關(guān)鍵,其中垂直、平行關(guān)系證明中應用轉(zhuǎn)化與化歸思想的常見類型:(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.18、(Ⅰ).=.(Ⅱ).【解析】試題分析:利用正弦定理“角轉(zhuǎn)邊”得出邊的關(guān)系,再根據(jù)余弦定理求出,進而得到,由轉(zhuǎn)化為,求出,進而求出,從而求出的三角函數(shù)值,利用兩角差的正弦公式求出結(jié)果.試題解析:(Ⅰ)解:在中,因為,故由,可得.由已知及余弦定理,有,所以.由正弦定理,得.所以,的值為,的值為.(Ⅱ)解:由(Ⅰ)及,得,所以,.故.考點:正弦定理、余弦定理、解三角形【名師點睛】利用正弦定理進行“邊轉(zhuǎn)角”尋求角的關(guān)系,利用“角轉(zhuǎn)邊”尋求邊的關(guān)系,利用余弦定理借助三邊關(guān)系求角,利用兩角和差公式及二倍角公式求三角函數(shù)值.利用正、余弦定理解三角形問題是高考高頻考點,經(jīng)常利用三角形內(nèi)角和定理,三角形面積公式,結(jié)合正、余弦定理解題.19、【解析】
根據(jù)集合A,B的意義,求出集合A,B,再根據(jù)交集的運算求得結(jié)果即可.【詳解】對于集合A,,對于集合B,當x<1時,故B=;故A∩B=故答案為【點睛】本題考查了交集的運算,準確計算集合A,B是關(guān)鍵,是基礎題.20、(1);(2).【解析】
(1)根據(jù)余弦定理即可解決.(2)根據(jù)向量的三角形法則即可解決.【詳解】(1)因為,所以得,所以,所以,因為所以;(2)取的中點,則,,所以所以,從而由平行四邊形性質(zhì)有故.【點睛】本題主要考查了余弦定理以及向量的三角形法則,其中第二問用了完全平方以及加減消元的思想,是本題的一個難點.解決本題的關(guān)鍵是畫一個三角形結(jié)合三角形進行分析.21、(1),(2);.(3)【解析】
(1)由相鄰最高點距離得周期,從而可得,由對稱性可求得;(2)結(jié)合正弦函數(shù)性質(zhì)可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度數(shù)據(jù)中心基礎設施建設合同范本6篇
- 二零二五版基礎小學門衛(wèi)崗位職責與待遇聘用合同3篇
- 商場電梯維修與保養(yǎng)合同(二零二五年)2篇
- 二零二五年度離婚協(xié)議書起草與子女撫養(yǎng)權(quán)執(zhí)行服務合同范本3篇
- 買賣2024年經(jīng)濟型住宅房屋合同書
- 2025年70米煙囪拆除工程材料采購與質(zhì)量控制合同3篇
- 2025版旅游地產(chǎn)開發(fā)投資合同4篇
- 2025年無錫市二手房買賣合同范本細則解讀3篇
- 年度Β-內(nèi)酰胺類抗菌藥物競爭策略分析報告
- 年度超精過濾設備競爭策略分析報告
- 2024-2025學年山東省濰坊市高一上冊1月期末考試數(shù)學檢測試題(附解析)
- 綿陽市高中2022級(2025屆)高三第二次診斷性考試(二診)歷史試卷(含答案)
- 《視頻壓縮基礎》課件
- 2025南方財經(jīng)全媒體集團校園招聘63人高頻重點提升(共500題)附帶答案詳解
- 《A機場公司人力資源管理工作實踐調(diào)研報告》2600字(論文)
- 社工人才培訓計劃實施方案
- 數(shù)學-湖南省新高考教學教研聯(lián)盟(長郡二十校聯(lián)盟)2024-2025學年2025屆高三上學期第一次預熱演練試題和答案
- 四年級數(shù)學(上)計算題專項練習及答案
- 6、水平四+田徑18課時大單元計劃-《雙手頭上前擲實心球》
- 幼兒園人民幣啟蒙教育方案
- 軍事理論(2024年版)學習通超星期末考試答案章節(jié)答案2024年
評論
0/150
提交評論