版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.根據(jù)如下樣本數(shù)據(jù)x
3
4
5
6
7
8
y
可得到的回歸方程為,則()A. B. C. D.2.設(shè),是兩個不同的平面,a,b是兩條不同的直線,給出下列四個命題,正確的是()A.若,,則 B.若,,,則C.若,,,則 D.若,,,則3.一支田徑隊(duì)有男運(yùn)動員560人,女運(yùn)動員420人,為了解運(yùn)動員的健康情況,從男運(yùn)動員中任意抽取16人,從女生中任意抽取12人進(jìn)行調(diào)查.這種抽樣方法是()A.簡單隨機(jī)抽樣法 B.抽簽法C.隨機(jī)數(shù)表法 D.分層抽樣法4.對于函數(shù),在使成立的所有常數(shù)中,我們把的最大值稱為函數(shù)的“下確界”.若函數(shù),的“下確界”為,則的取值范圍是()A. B. C. D.5.已知變量和滿足相關(guān)關(guān)系,變量和滿足相關(guān)關(guān)系.下列結(jié)論中正確的是()A.與正相關(guān),與正相關(guān) B.與正相關(guān),與負(fù)相關(guān)C.與負(fù)相關(guān),與y正相關(guān) D.與負(fù)相關(guān),與負(fù)相關(guān)6.大衍數(shù)列,來源于《乾坤普》中對易傳“大衍之?dāng)?shù)五十”的推論,主要用于解釋中國傳統(tǒng)文化中太極衍生原理.?dāng)?shù)列中的每一項(xiàng),都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩翼數(shù)量總和,是中國傳統(tǒng)文化中隱藏著的世界數(shù)學(xué)史上第一道數(shù)列題.其前10項(xiàng)依次是0,2,4,8,12,18,24,32,40,50,……則此數(shù)列的第20項(xiàng)為()A.200 B.180 C.128 D.1627.在數(shù)列an中,an+1=an+a(n∈N*,a為常數(shù)),若平面上的三個不共線的非零向量OA、OB、OC滿足OC=a1A.1005 B.1006 C.2010 D.20128.在中,角均為銳角,且,則的形狀是()A.直角三角形 B.銳角三角形 C.鈍角三角形 D.等腰三角形9.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞減的是(
)A. B. C. D.10.已知向量,,,則與的夾角為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖甲是第七屆國際數(shù)學(xué)教育大會(簡稱)的會徽圖案,會徽的主體圖案是由如圖乙的一連串直角三角形演化而成的,其中,如果把圖乙中的直角三角形繼續(xù)作下去,記的長度構(gòu)成數(shù)列,則此數(shù)列的通項(xiàng)公式為_____.12.在等比數(shù)列中,,公比,若,則的值為.13.若在上是減函數(shù),則的取值范圍為______.14.圓與圓的公共弦長為________.15.在平面直角坐標(biāo)系中,圓的方程為.若直線上存在一點(diǎn),使過所作的圓的兩條切線相互垂直,則實(shí)數(shù)的取值范圍是______.16.設(shè)向量滿足,,,.若,則的最大值是________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.某同學(xué)利用暑假時(shí)間到一家商場勤工儉學(xué),該商場向他提供了三種付酬方案:第一種,每天支付元,沒有獎金;第二種,每天的底薪元,另有獎金.第一天獎金元,以后每天支付的薪酬中獎金比前一天的獎金多元;第三種,每天無底薪,只有獎金.第一天獎金元,以后每天支付的獎金是前一天的獎金的倍.(1)工作天,記三種付費(fèi)方式薪酬總金額依次為、、,寫出、、關(guān)于的表達(dá)式;(2)該學(xué)生在暑假期間共工作天,他會選擇哪種付酬方式?18.在正方體中.(1)求證:;(2)是中點(diǎn)時(shí),求直線與面所成角.19.已知函數(shù)(I)求的值(II)求的最小正周期及單調(diào)遞增區(qū)間.20.已知函數(shù)的部分圖象如圖所示.(1)求的解析式;(2)求的單調(diào)增區(qū)間并求出取得最小值時(shí)所對應(yīng)的x取值集合.21.已知,其中,,.(1)求的單調(diào)遞增區(qū)間;(2)在中,角,,所對的邊分別為,,,,,且向量與共線,求邊長和的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】試題分析:依據(jù)樣本數(shù)據(jù)描點(diǎn)連線可知圖像為遞減且在軸上的截距大于0,所以.考點(diǎn):1.散點(diǎn)圖;2.線性回歸方程;2、C【解析】
利用線面、面面之間的位置關(guān)系逐一判斷即可.【詳解】對于A,若,,則平行、相交、異面均有可能,故A不正確;對于B,若,,,則垂直、平行均有可能,故B不正確;對于C,若,,,根據(jù)線面垂直的定義可知內(nèi)的兩條相交線線與內(nèi)的兩條相交線平行,故,故C正確;對于D,由C可知,D不正確;故選:C【點(diǎn)睛】本題考查了由線面平行、線面垂直判斷線面、線線、面面之間的位置關(guān)系,屬于基礎(chǔ)題.3、D【解析】
若總體由差異明顯的幾部分組成時(shí),經(jīng)常采用分層抽樣的方法進(jìn)行抽樣【詳解】總體由男生和女生組成,比例為560:420=4:1,所抽取的比例也是16:12=4:1.故選D.【點(diǎn)睛】本小題主要考查抽樣方法,當(dāng)總體由差異明顯的幾部分組成時(shí),經(jīng)常采用分層抽樣的方法進(jìn)行抽樣,屬基本題.4、A【解析】
由下確界定義,,的最小值是,由余弦函數(shù)性質(zhì)可得.【詳解】由題意,的最小值是,又,由,得,,,時(shí),,所以.故選:A.【點(diǎn)睛】本題考查新定義,由新定義明確本題中的下確界就是函數(shù)的最小值.可通過解不等式確定參數(shù)的范圍.5、B【解析】
根據(jù)相關(guān)關(guān)系式,由一次項(xiàng)系數(shù)的符號即可判斷是正相關(guān)還是負(fù)相關(guān).【詳解】變量和滿足相關(guān)關(guān)系,由可知變量和為正相關(guān)變量和滿足相關(guān)關(guān)系,由,可知變量和為負(fù)相關(guān)所以B為正確選項(xiàng)故選:B【點(diǎn)睛】本題考查了通過相關(guān)關(guān)系式子判斷正負(fù)相關(guān)性,屬于基礎(chǔ)題.6、A【解析】
由0、2、4、8、12、18、24、32、40、50…,可得偶數(shù)項(xiàng)的通項(xiàng)公式:,即可得出.【詳解】由0、2、4、8、12、18、24、32、40、50…,可得偶數(shù)項(xiàng)的通項(xiàng)公式:,則此數(shù)列第20項(xiàng)=2×102=1.故選:A.【點(diǎn)睛】本題考查了數(shù)列遞推關(guān)系、通項(xiàng)公式、歸納法,屬于基礎(chǔ)題.7、A【解析】
利用等差數(shù)列的定義可知數(shù)列an為等差數(shù)列,由向量中三點(diǎn)共線的結(jié)論得出a1+【詳解】∵an+1=an∵三點(diǎn)A、B、C共線且該直線不過O點(diǎn),OC=a1因此,S2010故選:A.【點(diǎn)睛】本題考查等差數(shù)列求和,涉及等差數(shù)列的定義以及向量中三點(diǎn)共線結(jié)論的應(yīng)用,考查計(jì)算能力,屬于中等題.8、C【解析】,又角均為銳角,則,,且中,,的形狀是鈍角三角形,故選C.【方法點(diǎn)睛】本題主要考查利用誘導(dǎo)公式、正弦函數(shù)的單調(diào)性以及判斷三角形形狀,屬于中檔題.判斷三角形狀的常見方法是:(1)通過正弦定理和余弦定理,化邊為角,利用三角變換得出三角形內(nèi)角之間的關(guān)系進(jìn)行判斷;(2)利用正弦定理、余弦定理,化角為邊,通過代數(shù)恒等變換,求出邊與邊之間的關(guān)系進(jìn)行判斷;(3)根據(jù)余弦定理確定一個內(nèi)角為鈍角進(jìn)而知其為鈍角三角形.9、D【解析】
利用函數(shù)的奇偶性和單調(diào)性,逐一判斷各個選項(xiàng)中的函數(shù)的奇偶性和單調(diào)性,進(jìn)而得出結(jié)論.【詳解】由于函數(shù)是奇函數(shù),不是偶函數(shù),故排除A;由于函數(shù)是偶函數(shù),但它在區(qū)間上單調(diào)遞增,故排除B;由于函數(shù)是奇函數(shù),不是偶函數(shù),故排除C;由于函數(shù)是偶函數(shù),且滿足在區(qū)間上單調(diào)遞減,故滿足條件.故答案為:D【點(diǎn)睛】本題主要考查了函數(shù)的奇偶性的判定及應(yīng)用,其中解答中熟記函數(shù)的奇偶性的定義和判定方法,以及基本初等函數(shù)的奇偶性是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.10、D【解析】
直接利用向量的數(shù)量積轉(zhuǎn)化求解向量的夾角即可.【詳解】因?yàn)?,所以與的夾角為.故選:D.【點(diǎn)睛】本題主要考查向量的夾角的運(yùn)算,以及運(yùn)用向量的數(shù)量積運(yùn)算和向量的模.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由圖可知,由勾股定理可得,利用等差數(shù)列的通項(xiàng)公式求解即可.【詳解】根據(jù)圖形,因?yàn)槎际侵苯侨切危?是以1為首項(xiàng),以1為公差的等差數(shù)列,,,故答案為.【點(diǎn)睛】本題主要考查歸納推理的應(yīng)用,等差數(shù)列的定義與通項(xiàng)公式,以及數(shù)形結(jié)合思想的應(yīng)用,意在考查綜合應(yīng)用所學(xué)知識解答問題的能力,屬于與中檔題.12、1【解析】
因?yàn)椋?,故答案?.考點(diǎn):等比數(shù)列的通項(xiàng)公式.13、【解析】
化簡函數(shù)解析式,,時(shí),是余弦函數(shù)單調(diào)減區(qū)間的子集,即可求解.【詳解】,時(shí),,且在上是減函數(shù),,,因?yàn)榻獾?【點(diǎn)睛】本題主要考查了函數(shù)的三角恒等變化,余弦函數(shù)的單調(diào)性,屬于中檔題.14、【解析】
先求出公共弦方程為,再求出弦心距后即可求解.【詳解】兩圓方程相減可得公共弦直線方程為,圓的圓心為,半徑為,圓心到的距離為,公共弦長為.故答案為:.【點(diǎn)睛】本題考查了圓的一般方程以及直線與圓位置關(guān)系的應(yīng)用,屬于基礎(chǔ)題.15、【解析】試題分析:記兩個切點(diǎn)為,則由于,因此四邊形是正方形,,圓標(biāo)準(zhǔn)方程為,,,于是圓心直線的距離不大于,,解得.考點(diǎn):直線和圓的位置關(guān)系.16、【解析】
令,計(jì)算出模的最大值即可,當(dāng)與同向時(shí)的模最大.【詳解】令,則,因?yàn)?,所以?dāng),,因此當(dāng)與同向時(shí)的模最大,【點(diǎn)睛】本題主要考查了向量模的計(jì)算,以及二次函數(shù)在給定區(qū)間上的最值.整體換元的思想,屬于較的難題,在解二次函數(shù)的問題時(shí)往往結(jié)合圖像、開口、對稱軸等進(jìn)行分析.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),,;(2)第三種,理由見解析.【解析】
(1)三種支付方式每天支付的金額依次為數(shù)列、、,可知數(shù)列為常數(shù)數(shù)列,數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列,數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,利用等差數(shù)列和等比數(shù)列求和公式可計(jì)算出、、關(guān)于的表達(dá)式;(2)利用(1)中的結(jié)論,計(jì)算出、、的值,比較大小后可得出結(jié)論.【詳解】(1)設(shè)三種支付方式每天支付的金額依次為數(shù)列、、,它們的前項(xiàng)和分別為、、,第一種付酬方式每天所付金額組成數(shù)列為常數(shù)列,且,所以;第二種付酬方式每天所付金額組成數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列,所以;第三種付酬方式每天所付金額組成數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,所以;(2)由(1)知,當(dāng)時(shí),,,,則.因此,該學(xué)生在暑假期間共工作天,選第三種付酬方式較好.【點(diǎn)睛】本題考查等差數(shù)列和等比數(shù)列的應(yīng)用,涉及等差數(shù)列和等比數(shù)列求和公式的應(yīng)用,考查計(jì)算能力,屬于中等題.18、(1)見解析;(2).【解析】
(1)連接,證明平面,進(jìn)而可得出;(2)連接、、,設(shè),過點(diǎn)在平面內(nèi)作,垂足為點(diǎn),連接,設(shè),則角和均為直線與平面所成的角,從而可得出,即可求出所求角.【詳解】(1)如下圖所示,連接,在正方體中,平面,平面,,四邊形為正方形,,,平面,平面,;(2)連接、、,設(shè),過點(diǎn)在平面內(nèi)作,垂足為點(diǎn),設(shè),設(shè)正方體的棱長為,在正方體中,且,所以,四邊形為平行四邊形,,平面,平面,在平面內(nèi),,,,,則、、、四點(diǎn)共面,為的中點(diǎn),,且,平面,平面,,由勾股定理得,連接,設(shè),則直線與面所成角為,則,,由連比定理得,則,因此,直線與面所成角為.【點(diǎn)睛】本題考查線線垂直的證明,考查線面角的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,是中檔題.19、(I)2;(II)的最小正周期是,.【解析】
(Ⅰ)直接利用三角函數(shù)關(guān)系式的恒等變換,把函數(shù)的關(guān)系式變形成正弦型函數(shù),進(jìn)一步求出函數(shù)的值.(Ⅱ)直接利用函數(shù)的關(guān)系式,求出函數(shù)的周期和單調(diào)區(qū)間.【詳解】(Ⅰ)f(x)=sin2x﹣cos2xsinxcosx,=﹣cos2xsin2x,=﹣2,則f()=﹣2sin()=2,(Ⅱ)因?yàn)椋缘淖钚≌芷谑牵烧液瘮?shù)的性質(zhì)得,解得,所以,的單調(diào)遞增區(qū)間是.【點(diǎn)睛】本題主要考查了三角函數(shù)的化簡,以及函數(shù)的性質(zhì),是高考中的常考知識點(diǎn),屬于基礎(chǔ)題,強(qiáng)調(diào)基礎(chǔ)的重要性;三角函數(shù)解答題中,涉及到周期,單調(diào)性,單調(diào)區(qū)間以及最值等考點(diǎn)時(shí),都屬于考查三角函數(shù)的性質(zhì),首先應(yīng)把它化為三角函數(shù)的基本形式即,然后利用三角函數(shù)的性質(zhì)求解.20、(1)(2)單調(diào)增區(qū)間為,();x取值集合,()【解析】
(1)先由函數(shù)的最大值求出的值,再由圖中對稱軸與相鄰對稱中心之間的距離得出最小正周期,于此得出,再將點(diǎn)代入函數(shù)的解析式結(jié)合的范圍得出的值,于此可得出函數(shù)的解析式;(2)解不等式可得出函數(shù)的單調(diào)遞增區(qū)間,由可求出函數(shù)取最小值時(shí)的取值集合.【詳解】(1)由圖象可知,.因?yàn)?,所?所以.解得.又因?yàn)楹瘮?shù)的圖象經(jīng)過點(diǎn),所以,解得.又因?yàn)椋?,所?(2),,解得,,的單調(diào)增區(qū)間為,(),的最小值為-2,取得最小值時(shí)x取值集合,().【點(diǎn)睛】本題考查
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年跨境電商平臺股權(quán)轉(zhuǎn)讓合同書模板
- 裝修設(shè)計(jì)合同樣本
- 人事委托服務(wù)合同
- 工作方案范文合集9篇
- 報(bào)警器無plc課程設(shè)計(jì)
- 農(nóng)村土地流轉(zhuǎn)合同范本
- 二零二五年度二手拖拉機(jī)交易物流配送合同3篇
- 企業(yè)常見合同書
- 北京師范大學(xué)-香港浸會大學(xué)聯(lián)合國際學(xué)院《固體物理》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025版環(huán)保材料模具研發(fā)與制造服務(wù)合同范本2篇
- 中國AED布局與投放專家共識護(hù)理課件
- 無菌注射劑生產(chǎn)線清潔驗(yàn)證方案
- 2024年健康照護(hù)師理論試題
- 健康體檢授權(quán)委托書
- 2023年線路維護(hù)主管年度總結(jié)及下一年展望
- 中國石油青海油田公司員工壓力狀況調(diào)查及員工幫助計(jì)劃(EAP)實(shí)探的開題報(bào)告
- 2023年意識形態(tài)工作責(zé)任清單及風(fēng)險(xiǎn)點(diǎn)臺賬
- 《經(jīng)典動畫賞析》課件
- 大學(xué)英語四級閱讀理解精讀100篇
- 《活法》名著分享讀書分享會ppt
- 回轉(zhuǎn)工作臺設(shè)計(jì)畢業(yè)設(shè)計(jì)
評論
0/150
提交評論