上海理工大附中2022-2023學年數(shù)學高一第二學期期末學業(yè)水平測試模擬試題含解析_第1頁
上海理工大附中2022-2023學年數(shù)學高一第二學期期末學業(yè)水平測試模擬試題含解析_第2頁
上海理工大附中2022-2023學年數(shù)學高一第二學期期末學業(yè)水平測試模擬試題含解析_第3頁
上海理工大附中2022-2023學年數(shù)學高一第二學期期末學業(yè)水平測試模擬試題含解析_第4頁
上海理工大附中2022-2023學年數(shù)學高一第二學期期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若cosα=13,A.13 B.-13 C.2.圓周運動是一種常見的周期性變化現(xiàn)象,可表述為:質點在以某點為圓心半徑為r的圓周上的運動叫“圓周運動”,如圖所示,圓O上的點以點A為起點沿逆時針方向旋轉到點P,若連接OA、OP,形成一個角,當角,則()A. B. C. D.13.已知在中,,那么的值為()A. B. C. D.4.若平面向量,滿足,,且,則等于()A. B. C.2 D.85.下列函數(shù)所具有的性質,一定成立的是()A. B.C. D.6.下面結論中,正確結論的是()A.存在兩個不等實數(shù),使得等式成立B.(0<x<π)的最小值為4C.若是等比數(shù)列的前項的和,則成等比數(shù)列D.已知的三個內角所對的邊分別為,若,則一定是銳角三角形7.函數(shù)圖像的一條對稱軸方程為()A. B. C. D.8.已知三棱錐,若平面,,,,則三棱錐外接球的表面積為()A. B. C. D.9.已知直線與直線平行,則實數(shù)k的值為()A.-2 B.2 C. D.10.執(zhí)行如圖的程序框圖,則輸出的λ是()A.-2 B.-4 C.0 D.-2或0二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最大值是__________.12.光線從點射向y軸,經(jīng)過y軸反射后過點,則反射光線所在的直線方程是________.13.四棱柱中,平面ABCD,平面ABCD是菱形,,,,E是BC的中點,則點C到平面的距離等于________.14.已知,,,則在方向上的投影為__________.15.在中,,,,點在線段上,若,則的面積是_____.16.已知,且,則的取值范圍是____________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,,,求:的值.18.已知,函數(shù)(其中),且圖象在軸右側的第一個最高點的橫坐標為,并過點.(1)求函數(shù)的解析式;(2)求函數(shù)的單調增區(qū)間.19.已知數(shù)列和滿足:,,,,且是以q為公比的等比數(shù)列.(1)求證:;(2)若,試判斷是否為等比數(shù)列,并說明理由.(3)求和:.20.設等差數(shù)列的前項和為,已知,,;(1)求公差的取值范圍;(2)判斷與0的大小關系,并說明理由;(3)指出、、、中哪個最大,并說明理由;21.已知公差為正數(shù)的等差數(shù)列,,且成等比數(shù)列.(1)求;(2)若,求數(shù)列的前項的和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

利用二倍角余弦公式cos2α=2【詳解】由二倍角余弦公式可得cos2α=2【點睛】本題考查二倍角余弦公式的應用,著重考查學生對二倍角公式熟記和掌握情況,屬于基礎題.2、A【解析】

運用求任意角的三角函數(shù)值的步驟:化正、脫周、變銳角和求值,可得所求值.【詳解】.故選:A.【點睛】本題考查任意角三角函數(shù)值的求法,屬于基礎題.3、A【解析】

,不妨設,,則,選A.4、B【解析】

由,可得,再結合,展開可求出答案.【詳解】由,可知,展開可得,所以,又,,所以.故選:B.【點睛】本題考查向量數(shù)量積的應用,考查學生的計算求解能力,注意向量的平方等于模的平方,屬于基礎題.5、B【解析】

結合反三角函數(shù)的性質,逐項判定,即可求解.【詳解】由題意,對于A中,令,則,所以不正確;對于C中,根據(jù)反正弦函數(shù)的性質,可得,所以是錯誤的;對于D中,函數(shù)當時,則滿足,所以不正確,故選:B.【點睛】本題主要考查了反三角函數(shù)的性質的應用,其中解答中熟記反三角函數(shù)的性質,逐項判定是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.6、A【解析】

對各個選項逐一判斷,對于選項A,由,代入計算,即可判斷是否正確;對于選項B,設,結合函數(shù)的單調性,即可判斷是否正確;對于選項C,由公比為為偶數(shù),即可判斷是否正確;對于選項D,由余弦定理,即可判斷是否正確.【詳解】對于選項A,兩個不等實數(shù),使得等式成立,故A正確;對于選項B,若設設,可得在遞減,即函數(shù)的最小值為,故B錯誤;對于選項C,是等比數(shù)列的前項的和,當公比,為偶數(shù)時,則,均為,不能夠成等比數(shù)列,故C錯誤;對于選項D,中,若,可得,即為銳角,不能判斷一定是銳角三角形,故D錯誤.故選:A.【點睛】本題考查兩角和的正弦公式、基本不等式和等比數(shù)列的性質,以及余弦定理的應用,屬于基礎題.7、B【解析】

對稱軸為【詳解】依題意有解得故選B【點睛】本題考查的對稱軸,屬于基礎題。8、B【解析】

根據(jù)題意畫出三棱錐的圖形,將其放入一個長方體中,容易知道三棱錐的外接球半徑,利用球的表面積公式求解即可.【詳解】根據(jù)題意畫出三棱錐如圖所示,把三棱錐放入一個長方體中,三棱錐的外接球即這個長方體的外接球,長方體的外接球半徑等于體對角線的一半,所以三棱錐的外接球半徑,三棱錐的外接球的表面積.故選:B【點睛】本題主要考查三棱錐的外接球問題,對于三棱錐三條棱有兩兩垂直的情況,可以考慮將其放入一個長方體中求解外接球半徑,屬于基礎題.9、A【解析】

由兩直線平行的可得:,運算即可得解.【詳解】解:由兩直線平行的判定可得:,解得,故選:A.【點睛】本題考查利用兩直線平行求參數(shù),屬基礎題.10、A【解析】

根據(jù)框圖有,由判斷條件即即可求出的值.【詳解】由有.根據(jù)輸出的條件是,即.所以,解得:.故選:A【點睛】本題考查程序框圖和向量的加法以及數(shù)量積以及性質,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】分析:利用兩角和正弦公式簡化為y=,從而得到函數(shù)的最大值.詳解:y=sinx+cosx==.∴函數(shù)的最大值是故答案為點睛:本題考查了兩角和正弦公式,考查了正弦函數(shù)的圖象與性質,屬于基礎題.12、(或寫成)【解析】

光線從點射向y軸,即反射光線反向延長線經(jīng)過關于y軸的對稱點,則反射光線通過和兩個點,設直線方程求解即可。【詳解】由題意可知,所求直線方程經(jīng)過點關于y軸的對稱點為,則所求直線方程為,即.【點睛】此題的關鍵點在于物理學上光線的反射光線和入射光線關于鏡面對稱,屬于基礎題目。13、【解析】

利用等體法即可求解.【詳解】如圖,由ABCD是菱形,,,E是BC的中點,所以,又平面ABCD,所以平面ABCD,即,又,則平面,由平面,所以,所以,設點C到平面的距離為,由即,即,所以.故答案為:【點睛】本題考查了等體法求點到面的距離,同時考查了線面垂直的判定定理,屬于基礎題.14、【解析】

根據(jù)數(shù)量積的幾何意義計算.【詳解】在方向上的投影為.故答案為:1.【點睛】本題考查向量的投影,掌握投影的概念是解題基礎.15、【解析】

過作于,設,運用勾股定理和三角形的面積公式,計算可得所求值.【詳解】過作于,設,,,,又,可得,即有,可得的面積為.故答案為.【點睛】本題考查解三角形,考查勾股定理的運用,以及三角形的面積公式,考查化簡運算能力,屬于基礎題.16、【解析】

利用正弦函數(shù)的定義域求得值域,即的范圍,再根據(jù)反余弦函數(shù)的定義可求得的取值范圍.【詳解】因為且,所以,則根據(jù)反余弦函數(shù)的定義可得,則的取值范圍是.故答案為:【點睛】本題考查了正弦函數(shù)的定義域和值域,考查了反余弦函數(shù)的定義,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、【解析】

求出和的取值范圍,利用同角三角函數(shù)的基本關系求出和的值,然后利用兩角差的余弦公式可求出的值.【詳解】,則,且,,,,,,,因此,.故答案為:.【點睛】本題考查利用兩角差的余弦公式求值,解題的關鍵就是利用已知角來表示所求角,考查計算能力,屬于中等題.18、(1);(2).【解析】

(1)根據(jù)向量的數(shù)量積得,結合,即可求解;(2)令即可求得增區(qū)間.【詳解】(1)由題圖象在軸右側的第一個最高點的橫坐標為,并過點所以,解得,,解得:,所以;(2)令函數(shù)的單調增區(qū)間為.【點睛】此題考查根據(jù)平面向量的數(shù)量積,求函數(shù)解析式,根據(jù)三角函數(shù)的頂點坐標和曲線上的點的坐標求參數(shù),利用整體代入法求單調區(qū)間.19、(1)證明見解析(2)是等比數(shù)列,詳見解析(3)答案不唯一,具體見解析【解析】

(1)由即可證明;(2)證明即可(3)由(1)可知,是以為公比的等比數(shù)列,也是以為公比的等比數(shù)列,討論和分組求和即可【詳解】(1)因為,且是以q為公比的等比數(shù)列,所以,則,所以.(2)是等比數(shù)列因為;所以,又所以是以5為首項,為公比的等比數(shù)列.(3)由(1)可知,是以為公比的等比數(shù)列,也是以為公比的等比數(shù)列,所以當時,,當時.【點睛】本題考查等比數(shù)列的證明,分組求和,考查推理計算及分類討論思想,是中檔題20、(1);(2),理由見解析;(3),理由見解析;【解析】

(1)由,,,得到不等式且,即可求解公差的取值范圍;(2)由,,結合等差數(shù)列的性質和前項和公式,得到且,即可求解;(3)有(2)知,可得,數(shù)列為遞減數(shù)列,即可求解.【詳解】(1)由題意,等差數(shù)列的前項和為,且,,,可得,,即且,解得,即公差的取值范圍是.(2)由,,可得且,即且,所以,所以.(3)有(2)知,可得,數(shù)列為遞減數(shù)列,當時,,當時,,所以、、、中最大.【點睛】本題主要考查了等差數(shù)列的前項和公式,等差數(shù)列的性質,以及等差數(shù)列的單調性的應用,其中解答熟記等差數(shù)列的前項和公式,等差數(shù)列的性質,合理利用數(shù)列的單調性是解答的關鍵,著重考查了推理與運算

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論