沈陽市重點(diǎn)中學(xué)2022-2023學(xué)年數(shù)學(xué)高一下期末綜合測試試題含解析_第1頁
沈陽市重點(diǎn)中學(xué)2022-2023學(xué)年數(shù)學(xué)高一下期末綜合測試試題含解析_第2頁
沈陽市重點(diǎn)中學(xué)2022-2023學(xué)年數(shù)學(xué)高一下期末綜合測試試題含解析_第3頁
沈陽市重點(diǎn)中學(xué)2022-2023學(xué)年數(shù)學(xué)高一下期末綜合測試試題含解析_第4頁
沈陽市重點(diǎn)中學(xué)2022-2023學(xué)年數(shù)學(xué)高一下期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知兩個正數(shù)a,b滿足,則的最小值是(

)A.2 B.3 C.4 D.52.對于不同的直線l、、及平面,下列命題中錯誤的是()A.若,,則 B.若,,則C.若,,則 D.若,,則3.經(jīng)過平面外一點(diǎn)和平面內(nèi)一點(diǎn)與平面垂直的平面有()A.1個 B.2個 C.無數(shù)個 D.1個或無數(shù)個4.某市電視臺為調(diào)查節(jié)目收視率,想從全市3個縣按人口數(shù)用分層抽樣的方法抽取一個容量為的樣本,已知3個縣人口數(shù)之比為,如果人口最多的一個縣抽出60人,那么這個樣本的容量等于()A.96 B.120 C.180 D.2405.若一架飛機(jī)向目標(biāo)投彈,擊毀目標(biāo)的概率為,目標(biāo)未受損的概率為,則目標(biāo)受損但未被擊毀的概率為()A. B. C. D.6.在區(qū)間上隨機(jī)選取一個數(shù),則滿足的概率為()A. B. C. D.7.在中,內(nèi)角的對邊分別為,且,,若,則()A.2 B.3 C.4 D.8.在中,若,那么是()A.直角三角形 B.鈍角三角形 C.銳角三角形 D.不能確定9.設(shè)集合,,若存在實(shí)數(shù)t,使得,則實(shí)數(shù)的取值范圍是()A. B. C. D.10.設(shè)變量、滿足約束條件,則目標(biāo)函數(shù)的最大值為()A.2 B.3 C.4 D.9二、填空題:本大題共6小題,每小題5分,共30分。11.已知關(guān)于實(shí)數(shù)x,y的不等式組構(gòu)成的平面區(qū)域為,若,使得恒成立,則實(shí)數(shù)m的最小值是______.12.的值為___________.13.200名職工年齡分布如圖所示,從中隨機(jī)抽取40名職工作樣本,采用系統(tǒng)抽樣方法,按1~200編號,分為40組,分別為1~5,6~10,…,196~200,若第5組抽取號碼為22,則第8組抽取號碼為________.若采用分層抽樣,40歲以下年齡段應(yīng)抽取________人.14.在平面直角坐標(biāo)系中,為原點(diǎn),,動點(diǎn)滿足,則的最大值是.15.已知扇形的面積為,圓心角為,則該扇形半徑為__________.16.關(guān)于的不等式的解集是,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知三角形的三個頂點(diǎn),,.(1)求線段的中線所在直線方程;(2)求邊上的高所在的直線方程.18.已知拋物線的焦點(diǎn)為,過的直線交軸正半軸于點(diǎn),交拋物線于兩點(diǎn),其中點(diǎn)在第一象限.(Ⅰ)求證:以線段為直徑的圓與軸相切;(Ⅱ)若,,,求的取值范圍.19.已知,,其中.(1)求的值;(2)求的值.20.已知.(1)若三點(diǎn)共線,求實(shí)數(shù)的值;(2)證明:對任意實(shí)數(shù),恒有成立.21.如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中點(diǎn).(1)求證:AE⊥B1C;(2)求異面直線AE與A1C所成的角的大小;(3)若G為C1C中點(diǎn),求二面角C-AG-E的正切值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

根據(jù)題意,分析可得,對其變形可得,由基本不等式分析可得答案.【詳解】解:根據(jù)題意,正數(shù),滿足,則;即的最小值是;故選:.【點(diǎn)睛】本題考查基本不等式的性質(zhì)以及應(yīng)用,關(guān)鍵是掌握基本不等式應(yīng)用的條件.2、C【解析】

由平面的基本性質(zhì)及其推論得:對于選項C,可能l∥n或l與n相交或l與n異面,即選項C錯誤,得解.【詳解】由平行公理4可得選項A正確,由線面垂直的性質(zhì)可得選項B正確,由異面直線所成角的定義可得選項D正確,對于選項C,若l∥α,n∥α,則l∥n或l與n相交或l與n異面,即選項C錯誤,故選C.【點(diǎn)睛】本題考查了平面中線線、線面的關(guān)系及性質(zhì)定理與推論的應(yīng)用,屬簡單題.3、D【解析】

討論平面外一點(diǎn)和平面內(nèi)一點(diǎn)連線,與平面垂直和不垂直兩種情況.【詳解】(1)設(shè)平面為平面,點(diǎn)為平面外一點(diǎn),點(diǎn)為平面內(nèi)一點(diǎn),此時,直線垂直底面,過直線的平面有無數(shù)多個與底面垂直;(2)設(shè)平面為平面,點(diǎn)為平面外一點(diǎn),點(diǎn)為平面內(nèi)一點(diǎn),此時,直線與底面不垂直,過直線的平面,只有平面垂直底面.綜上,過平面外一點(diǎn)和平面內(nèi)一點(diǎn)與平面垂直的平面有1個或無數(shù)個,故選D.【點(diǎn)睛】借助長方體研究空間中線、面位置關(guān)系問題,能使問題直觀化,降低問題的抽象性.4、B【解析】

根據(jù)分層抽樣的性質(zhì),直接列式求解即可.【詳解】因為3個縣人口數(shù)之比為,而人口最多的一個縣抽出60人,則根據(jù)分層抽樣的性質(zhì),有,故選:B.【點(diǎn)睛】本題考查分層抽樣,解題關(guān)鍵是明確分層抽樣是按比例進(jìn)行抽樣.5、D【解析】

由已知條件利用對立事件概率計算公式直接求解.【詳解】由于一架飛機(jī)向目標(biāo)投彈,擊毀目標(biāo)的概率為,目標(biāo)未受損的概率為;所以目標(biāo)受損的概率為:;目標(biāo)受損分為擊毀和未被擊毀,它們是對立事件;所以目標(biāo)受損的概率目標(biāo)受損被擊毀的概率目標(biāo)受損未被擊毀的概率;故目標(biāo)受損但未被擊毀的概率目標(biāo)受損的概率目標(biāo)受損被擊毀的概率,即目標(biāo)受損但未被擊毀的概率;故答案選D【點(diǎn)睛】本題考查概率的求法,注意對立事件概率計算公式的合理運(yùn)用,屬于基礎(chǔ)題.6、D【解析】

在區(qū)間上,且滿足所得區(qū)間為,利用區(qū)間的長度比,即可求解.【詳解】由題意,在區(qū)間上,且滿足所得區(qū)間為,由長度比的幾何概型,可得概率為,故選D.【點(diǎn)睛】本題主要考查了長度比的幾何概型的概率的計算,其中解答中認(rèn)真審題,合理利用長度比求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.7、B【解析】

利用正弦定理化簡,由此求得的值.利用三角形內(nèi)角和定理和兩角和與差的正弦公式化簡,由此求得的值,進(jìn)而求得的值.【詳解】利用正弦定理化簡得,所以為銳角,且.由于,所以由得,化簡得.若,則,故.若,則,由余弦定理得,解得.綜上所述,,故選B.【點(diǎn)睛】本小題主要考查正弦定理、余弦定理解三角形,考查同角三角函數(shù)的基本關(guān)系式,考查三角形內(nèi)角和定理,考查兩角和與差的正弦公式,屬于中檔題.8、C【解析】

由tanAtanB>1可得A,B都是銳角,故tanA和tanB都是正數(shù),可得tan(A+B)<0,故A+B為鈍角,C為銳角,可得結(jié)論.【詳解】由△ABC中,A,B,C為三個內(nèi)角,若tanAtanB>1,可得A,B都是銳角,故tanA和tanB都是正數(shù),∴tan(A+B)0,故A+B為鈍角.由三角形內(nèi)角和為180°可得,C為銳角,故△ABC是銳角三角形,故選C.【點(diǎn)睛】本題考查根據(jù)三角函數(shù)值的符號判斷角所在的范圍,兩角和的正切公式的應(yīng)用,判斷A+B為鈍角,是解題的關(guān)鍵.9、C【解析】

得到圓心距與半徑和差關(guān)系得到答案.【詳解】圓心距存在實(shí)數(shù)t,使得故答案選C【點(diǎn)睛】本題考查了兩圓的位置關(guān)系,意在考查學(xué)生的計算能力.10、D【解析】

由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得結(jié)論.【詳解】畫出滿足約束條件的可行域,如圖,畫出可行域,,,,平移直線,由圖可知,直線經(jīng)過時目標(biāo)函數(shù)有最大值,的最大值為9.故選D.【點(diǎn)睛】本題主要考查線性規(guī)劃中,利用可行域求目標(biāo)函數(shù)的最值,屬于簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由,使得恒成立可知,只需求出的最大值即可,再由表示平面區(qū)域內(nèi)的點(diǎn)與定點(diǎn)距離的平方,因此結(jié)合平面區(qū)域即可求出結(jié)果.【詳解】作出約束條件所表示的可行域如下:由,使得恒成立可知,只需求出的最大值即可;令目標(biāo)函數(shù),則目標(biāo)函數(shù)表示平面區(qū)域內(nèi)的點(diǎn)與定點(diǎn)距離的平方,由圖像易知,點(diǎn)到的距離最大.由得,所以.因此,即的最小值為37.故答案為37【點(diǎn)睛】本題主要考查簡單的線性規(guī)劃問題,只需分析清楚目標(biāo)函數(shù)的幾何意義,即可結(jié)合可行域來求解,屬于??碱}型.12、【解析】

=13、371【解析】

由系統(tǒng)抽樣,編號是等距出現(xiàn)的規(guī)律可得,分層抽樣是按比例抽取人數(shù).【詳解】第8組編號是22+5+5+5=37,分層抽樣,40歲以下抽取的人數(shù)為50%×40=1(人).故答案為:37;1.【點(diǎn)睛】本題考查系統(tǒng)抽樣和分層抽樣,屬于基礎(chǔ)題.14、【解析】

試題分析:設(shè),表示以為圓心,r=1為半徑的圓,而,所以,,,故得最大值為考點(diǎn):1.圓的標(biāo)準(zhǔn)方程;2.向量模的運(yùn)算15、2【解析】

將圓心角化為弧度制,再利用扇形面積得到答案.【詳解】圓心角為扇形的面積為故答案為2【點(diǎn)睛】本題考查了扇形的面積公式,屬于簡單題.16、【解析】

利用二次不等式解集與二次方程根的關(guān)系,由二次不等式的解集得到二次方程的根,再利用根與系數(shù)的關(guān)系,得到和的值,得到答案.【詳解】因為關(guān)于的不等式的解集是,所以關(guān)于的方程的解是,由根與系數(shù)的關(guān)系得,解得,所以.【點(diǎn)睛】本題考查二次不等式解集和二次方程根之間的關(guān)系,屬于簡單題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2).【解析】

(1)先求出BC中點(diǎn)的坐標(biāo),再求BC的中線所在直線的方程;(2)先求出AB的斜率,再求出邊上的高所在的直線方程.【詳解】(1)由題得BC的中點(diǎn)D的坐標(biāo)為(2,-1),所以,所以線段的中線AD所在直線方程為即.(2)由題得,所以AB邊上的高所在直線方程為,即.【點(diǎn)睛】本題主要考查直線方程的求法,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.18、(Ⅰ)證明見解析;(Ⅱ).【解析】

試題分析:(Ⅰ)題意實(shí)質(zhì)上證明線段的中點(diǎn)到軸的距離等于線段長的一半,根據(jù)拋物線的定義設(shè)可證得;(Ⅱ)同樣設(shè),,把已知,用坐標(biāo)表示出來,消去坐標(biāo)及,得出與的關(guān)系,此時就可得出的取值范圍.試題解析:(Ⅰ)由已知,設(shè),則,圓心坐標(biāo)為,圓心到軸的距離為,圓的半徑為,所以,以線段為直徑的圓與軸相切.(Ⅱ)解法一:設(shè),由,,得,,所以,,由,得.又,,所以.代入,得,,整理得,代入,得,所以,因為,所以的取值范圍是.解法二:設(shè),,將代入,得,所以(*),由,,得,,所以,,,將代入(*)式,得,所以,.代入,得.因為,所以的取值范圍是.考點(diǎn):拋物線的定義,拋物線的焦點(diǎn)弦問題.19、(1)(2)【解析】

(1)根據(jù)題意,由,求解,注意角的范圍,可求得值,再根據(jù)運(yùn)用兩角和正切公式,即可求解;(2)由題意,配湊組合角,運(yùn)用兩角差余弦公式,即可求解.【詳解】(1)∵,∴,∵,∴,∴,,(2)∵,∴,,∵,,∴,,∴.【點(diǎn)睛】本題考查三角恒等變換中的由弦求切、兩角和正切公式、兩角差余弦公式,考查配湊組合角,考查計算能力,屬于基礎(chǔ)題.20、(1)-3;(2)證明見解析.【解析】分析:(1)由題意可得,結(jié)合三點(diǎn)共線的充分必要條件可得.(2)由題意結(jié)合平面向量數(shù)量積的坐標(biāo)運(yùn)算法則可得,則恒有成立.詳解:(1),∵三點(diǎn)共線,∴,∴.(2),∴,∴恒有成立.點(diǎn)睛:本題主要考查平面向量數(shù)量積的運(yùn)算法則,二次函數(shù)的性質(zhì)及其應(yīng)用等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.21、(1)見解析;(2);(3)【解析】

(1)由BB1⊥面ABC及線面垂直的性質(zhì)可得AE⊥BB1,由AC=AB,E是BC的中點(diǎn),及等腰三角形三線合一,可得AE⊥BC,結(jié)合線面垂直的判定定理可證得AE⊥面BB1C1C,進(jìn)而由線面垂直的性質(zhì)得到AE⊥B1C;(2)取B1C1的中點(diǎn)E1,連A1E1,E1C,根據(jù)異面直線夾角定義可得,∠E1A1C是異面直線A與A1C所成的角,設(shè)AC=AB=AA1=2,解三角形E1A1C可得答案.(3)連接AG,設(shè)P是AC的中點(diǎn),過點(diǎn)P作PQ⊥AG于Q,連EP,EQ,則EP⊥AC,由直三棱錐的側(cè)面與底面垂直,結(jié)合面面垂直的性質(zhì)定理,可得EP⊥平面ACC1A1,進(jìn)而由二面角的定義可得∠PQE是二面角C-AG-E的平面角.【詳解】證明:(1)因為BB1⊥面ABC,AE?面ABC,所以AE⊥BB1由AB=AC,E為BC的中點(diǎn)得到AE⊥BC∵BC∩BB1=B∴AE⊥面BB1C1C∴AE⊥B1C解:(2)取B1C1的中點(diǎn)E1,連A1E1,E1C,則AE∥A1E1,∴∠E1A1C是異面直線AE與A1C所成的角.設(shè)AC=AB=AA1=2,則由∠BAC=90°,可得A1E1=AE=,A1C=2,E1C1=EC=BC=∴E1C==∵在△E1A1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論