版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某正弦型函數(shù)的圖像如圖,則該函數(shù)的解析式可以為().A. B.C. D.2.如圖是某個正方體的平面展開圖,,是兩條側(cè)面對角線,則在該正方體中,與()A.互相平行 B.異面且互相垂直 C.異面且夾角為 D.相交且夾角為3.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知asinA-bsinB=4csinC,cosA=-,則=A.6 B.5 C.4 D.34.我國魏晉時期的數(shù)學(xué)家劉徽,創(chuàng)立了用圓內(nèi)接正多邊形面積無限逼近圓面積的方法,稱為“割圓術(shù)”,為圓周率的研究提供了科學(xué)的方法.在半徑為1的圓內(nèi)任取一點,則該點取自圓內(nèi)接正十二邊形外的概率為A. B.C. D.5.sin300°的值為A. B. C. D.6.設(shè)集合A={x|x≥–3},B={x|–3<x<1},則A∪B=()A.{x|x>–3} B.{x|x<1}C.{x|x≥–3} D.{x|–3≤x<1}7.執(zhí)行如下圖所示的程序框圖,若輸出的,則輸入的的值為()A. B. C. D.8.已知函數(shù),給出下列四個結(jié)論:①函數(shù)滿足;②函數(shù)圖象關(guān)于直線對稱;③函數(shù)滿足;④函數(shù)在是單調(diào)增函數(shù);其中正確結(jié)論的個數(shù)是()A. B. C. D.9.設(shè)的內(nèi)角所對的邊分別為,且,已知的面積等于,,則的值為()A. B. C. D.10.我國古代數(shù)學(xué)巨著《九章算術(shù)》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據(jù)上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是()A.2 B.3 C.4 D.1二、填空題:本大題共6小題,每小題5分,共30分。11.在平面直角坐標(biāo)系中,點在第二象限,,,則向量的坐標(biāo)為________.12.在中,若,則____;13.已知四面體的四個頂點均在球的表面上,為球的直徑,,四面體的體積最大值為____14.圓錐的底面半徑是3,高是4,則圓錐的側(cè)面積是__________.15.已知一組數(shù)據(jù)6,7,8,8,9,10,則該組數(shù)據(jù)的方差是____.16.已知為等差數(shù)列,,前n項和取得最大值時n的值為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.?dāng)?shù)列an,n∈N*各項均為正數(shù),其前n項和為S(1)求證數(shù)列Sn2為等差數(shù)列,并求數(shù)列(2)設(shè)bn=24Sn4-1,求數(shù)列bn的前n18.將邊長分別為、、、…、、、…的正方形疊放在一起,形成如圖所示的圖形,由小到大,依次記各陰影部分所在的圖形為第個、第個、……、第個陰影部分圖形.設(shè)前個陰影部分圖形的面積的平均值為.記數(shù)列滿足,(1)求的表達式;(2)寫出,的值,并求數(shù)列的通項公式;(3)定義,記,且恒成立,求的取值范圍.19.等差數(shù)列中,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前n項和.20.已知向量=,=,=,為坐標(biāo)原點.(1)若△為直角三角形,且∠為直角,求實數(shù)的值;(2)若點、、能構(gòu)成三角形,求實數(shù)應(yīng)滿足的條件.21.如圖是我國2011年至2017年生活垃圾無害化處理量(單位:億噸)的折線圖(年份代碼1-7分別對應(yīng)年份)(1)建立關(guān)于的回歸方程(系數(shù)精確到0.001);(2)預(yù)測2020年我國生活垃圾無害化處理量.附注:參考數(shù)據(jù):,,回歸方程中斜率和截距的最小二乘估計公式分別為:,.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】試題分析:由圖象可得最大值為2,則A=2,周期,∴∴,又,是五點法中的第一個點,∴,∴把A,B排除,對于C:,故選C考點:本題考查函數(shù)的圖象和性質(zhì)點評:解決本題的關(guān)鍵是確定的值2、D【解析】
先將平面展開圖還原成正方體,再判斷求解.【詳解】將平面展開圖還原成正方體如圖所示,則B,C兩點重合,所以與相交,連接,則為正三角形,所以與的夾角為.故選D.【點睛】本題主要考查空間直線的位置關(guān)系,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.3、A【解析】
利用余弦定理推論得出a,b,c關(guān)系,在結(jié)合正弦定理邊角互換列出方程,解出結(jié)果.【詳解】詳解:由已知及正弦定理可得,由余弦定理推論可得,故選A.【點睛】本題考查正弦定理及余弦定理推論的應(yīng)用.4、D【解析】
由半徑為1的圓內(nèi)接正十二邊形,可分割為12個頂角為,腰為1的等腰三角形,求得十二邊形的面積,利用面積比的幾何概型,即可求解.【詳解】由題意,半徑為1的圓內(nèi)接正十二邊形,可分割為12個頂角為,腰為1的等腰三角形,所以該正十二邊形的面積為,由幾何概型的概率計算公式,可得所求概率,故選D.【點睛】本題主要考查了幾何概型的概率的計算問題,解決此類問題的步驟:求出滿足條件A的基本事件對應(yīng)的“幾何度量”,再求出總的基本事件對應(yīng)的“幾何度量”,然后根據(jù)求解,著重考查了分析問題和解答問題的能力.5、B【解析】
利用誘導(dǎo)公式化簡,再求出值為.【詳解】因為,故選B.【點睛】本題考查誘導(dǎo)公式的應(yīng)用,即終邊相同角的三角函數(shù)值相等及.6、C【解析】
根據(jù)并集的運算律可計算出集合A∪B.【詳解】∵A=xx≥-3,B=x故選:C.【點睛】本題考查集合的并集運算,解題的關(guān)鍵就是并集運算律的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.7、D【解析】由題意,當(dāng)輸入,則;;;,終止循環(huán),則輸出,所以,故選D.8、C【解析】
求出余弦函數(shù)的周期,對稱軸,單調(diào)性,逐個判斷選項的正誤即可.【詳解】函數(shù),函數(shù)的周期為,所以①正確;時,,函數(shù)取得最大值,所以函數(shù)圖象關(guān)于直線對稱,②正確;函數(shù)滿足即.所以③正確;因為時,,函數(shù)取得最大值,所以函數(shù)在上不是單調(diào)增函數(shù),不正確;故選.【點睛】本題主要考查余弦函數(shù)的單調(diào)性、周期性以及對稱軸等性質(zhì)的應(yīng)用.9、D【解析】
由正弦定理化簡已知,結(jié)合,可求,利用同角三角函數(shù)基本關(guān)系式可求,進而利用三角形的面積公式即可解得的值.【詳解】解:,由正弦定理可得,,,即,,解得:或(舍去),的面積,解得.故選:.【點睛】本題主要考查了正弦定理,同角三角函數(shù)基本關(guān)系式,三角形的面積公式在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.10、B【解析】
將問題轉(zhuǎn)化為等比數(shù)列問題,最終變?yōu)榍蠼獾缺葦?shù)列基本量的問題.【詳解】根據(jù)實際問題可以轉(zhuǎn)化為等比數(shù)列問題,在等比數(shù)列中,公比,前項和為,,,求的值.因為,解得,,解得.故選B.【點睛】本題考查等比數(shù)列的實際應(yīng)用,難度較易.熟悉等比數(shù)列中基本量的計算,對于解決實際問題很有幫助.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由三角函數(shù)的定義求出點的坐標(biāo),然后求向量的坐標(biāo).【詳解】設(shè)點,由三角函數(shù)的定義有,得,,得,所以,所以故答案為:【點睛】本題考查三角函數(shù)的定義的應(yīng)用和已知點的坐標(biāo)求向量坐標(biāo),屬于基礎(chǔ)題.12、【解析】試題分析:因為,所以.由正弦定理,知,所以==.考點:1、同角三角函數(shù)間的基本關(guān)系;2、正弦定理.13、2【解析】
為球的直徑,可知與均為直角三角形,求出點到直線的距離為,可知點在球上的運動軌跡為小圓.【詳解】如圖所示,四面體內(nèi)接于球,為球的直徑,,,,過作于,,點在以為圓心,為半徑的小圓上運動,當(dāng)面面時,四面體的體積達到最大,.【點睛】立體幾何中求最值問題,核心通過直觀想象,找到幾何體是如何變化的?本題求解的突破口在于找到點的運動軌跡,考查學(xué)生的空間想象能力和邏輯思維能力.14、【解析】分析:由已知中圓錐的底面半徑是,高是,由勾股定理,我們可以計算出圓錐的母線長,代入圓錐側(cè)面積公式,即可得到結(jié)論.詳解:圓錐的底面半徑是,高是,圓錐的母線長,則圓錐側(cè)面積公式,故答案為.點睛:本題主要考查圓錐的性質(zhì)與圓錐側(cè)面積公式,意在考查對基本公式的掌握與理解,屬于簡單題.15、.【解析】
由題意首先求得平均數(shù),然后求解方差即可.【詳解】由題意,該組數(shù)據(jù)的平均數(shù)為,所以該組數(shù)據(jù)的方差是.【點睛】本題主要考查方差的計算公式,屬于基礎(chǔ)題.16、20【解析】
先由條件求出,算出,然后利用二次函數(shù)的知識求出即可【詳解】設(shè)的公差為,由題意得即,①即,②由①②聯(lián)立得所以故當(dāng)時,取得最大值400故答案為:20【點睛】等差數(shù)列的是關(guān)于的二次函數(shù),但要注意只能取正整數(shù).三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,an【解析】
(1)由題得Sn2-Sn-12=1(n≥2),即得數(shù)列Sn2為首項和公差都是1【詳解】(1)證明:∵2anSn-an整理得,Sn又S1∴數(shù)列Sn2為首項和公差都是∴S又Sn>0∴n≥2時,an=S∴數(shù)列an的通項公式為a(2)解:∵bn∴Tn=1-1∵n∈N*依題意有23>1故所求最大正整數(shù)m的值為3.【點睛】本題主要考查等差數(shù)列性質(zhì)的證明,考查項和公式求通項,考查裂項相消法求和,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.18、(1);(2),,;(3).【解析】
(1)根據(jù)題意,分別求出每一個陰影部分圖形的面積,即可得到前個陰影部分圖形的面積的平均值;(2)依據(jù)遞推式,結(jié)合分類討論思想,即可求出數(shù)列的通項公式;(3)先求出的表達式,再依題意得到,分類討論不等式恒成立的條件,取其交集,即得所求范圍?!驹斀狻浚?)由題意有,第一個陰影部分圖形面積是:;第二個陰影部分圖形面積是:;第三個陰影部分圖形面積是:;所以第個陰影部分圖形面積是:;故;(2)由(1)知,,,所以,,當(dāng)時,當(dāng)時,,綜上,數(shù)列的通項公式為,。(3)由(2)知,,,由題意可得,恒成立,①當(dāng)時,,即,所以,②當(dāng)時,,即,所以,③當(dāng)時,,即,所以,綜上,?!军c睛】本題主要考查數(shù)列的通項公式求法,數(shù)列不等式恒成立問題的解法以及分類討論思想的運用,意在考查學(xué)生邏輯推理能力及運算能力。19、(1);(2).【解析】
(1)根據(jù)等差數(shù)列公式得到方程組,計算得到答案.(2)先求出,再利用裂項求和求得.【詳解】(1)等差數(shù)列中,,解得:(2)數(shù)列的前n項和.【點睛】本題考查了數(shù)列的通項公式,裂項求和,意在考查學(xué)生對于數(shù)列公式的靈活運用及計算能力.20、(1);(2)【解析】
(1)利用向量的運算法則求出,,再利用向量垂直的充要條件列出方程求出m;(2)由題意得A,B,C三點不共線,則與不共線,列出關(guān)于m的不等式即可.【詳解】(1)因為=,=,=,所以,,若△ABC為直角三角形,且∠A為直角,則,∴3(2﹣m)+(1﹣m)=0,解得.(2)若點A,B,C能構(gòu)成三角形,則這三點不共線,即與不共線,得3(1﹣m)≠2﹣m,∴實數(shù)時,滿足條件.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年智能家居控制系統(tǒng)研發(fā)與安裝合同3篇
- 人合伙開店合同范本
- 二零二五年醫(yī)療機構(gòu)醫(yī)療廢物運輸合同4篇
- 二零二五年度苗圃基地與農(nóng)業(yè)合作社合作合同4篇
- 2025年度高校后勤物業(yè)承包合同范本4篇
- 2025年度教育機構(gòu)學(xué)生信息保密與隱私保護合同范本4篇
- 2025年度互聯(lián)網(wǎng)金融服務(wù)出借資金借款合同規(guī)范3篇
- 二零二五年度中學(xué)食堂及校園便利店特許經(jīng)營權(quán)合同3篇
- 2025年度廚房設(shè)備維修保養(yǎng)服務(wù)合同范本2篇
- 二零二五年度線上線下融合電商運營管理合同范本4篇
- 中國末端執(zhí)行器(靈巧手)行業(yè)市場發(fā)展態(tài)勢及前景戰(zhàn)略研判報告
- 北京離婚協(xié)議書(2篇)(2篇)
- 2025中國聯(lián)通北京市分公司春季校園招聘高頻重點提升(共500題)附帶答案詳解
- Samsung三星SMARTCAMERANX2000(20-50mm)中文說明書200
- 2024年藥品質(zhì)量信息管理制度(2篇)
- 2024年安徽省高考地理試卷真題(含答案逐題解析)
- 廣東省廣州市2024年中考數(shù)學(xué)真題試卷(含答案)
- 高中學(xué)校開學(xué)典禮方案
- 內(nèi)審檢查表完整版本
- 3級人工智能訓(xùn)練師(高級)國家職業(yè)技能鑒定考試題及答案
- 孤殘兒童護理員技能鑒定考試題庫(含答案)
評論
0/150
提交評論