急性肺血栓栓塞癥臨床預(yù)測模型的構(gòu)建_第1頁
急性肺血栓栓塞癥臨床預(yù)測模型的構(gòu)建_第2頁
急性肺血栓栓塞癥臨床預(yù)測模型的構(gòu)建_第3頁
急性肺血栓栓塞癥臨床預(yù)測模型的構(gòu)建_第4頁
急性肺血栓栓塞癥臨床預(yù)測模型的構(gòu)建_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

急性肺血栓栓塞癥臨床預(yù)測模型的構(gòu)建急性肺血栓栓塞癥臨床預(yù)測模型的構(gòu)建

摘要:急性肺血栓栓塞癥(AcutePulmonaryEmbolism,APE)是一種以肺動脈阻塞為主要特點(diǎn)的嚴(yán)重疾病,在臨床上具有極高的病死率。本研究旨在基于臨床指標(biāo)和影像特征構(gòu)建APE臨床預(yù)測模型,以提高對該疾病的診斷和治療水平。對2015年至2020年廣東大學(xué)附屬第二醫(yī)院住院治療的急性肺血栓栓塞癥患者進(jìn)行回顧性研究,共收集了236例患者的臨床、生化和影像檢查數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析。結(jié)果顯示,構(gòu)建的APE臨床預(yù)測模型的AUC值為0.947,敏感性為91.2%,特異性為85.7%。其中,白細(xì)胞計(jì)數(shù)、血紅蛋白、血小板計(jì)數(shù)、D-Dimer、血氧飽和度、肺動脈、右心室壁運(yùn)動顯著減弱、左心室舒張末期內(nèi)徑/LVOT,是影響APE預(yù)測的主要因素。本研究所建立的APE臨床預(yù)測模型具有高的敏感性和特異性,可用于臨床中對APE的預(yù)測和判斷,有望成為該疾病的新的臨床預(yù)測工具。

關(guān)鍵詞:急性肺血栓栓塞癥,預(yù)測模型,影像特征,臨床指標(biāo),肺動脈,右心室

Abstract:Acutepulmonaryembolism(APE)isaseriousdiseasecharacterizedbypulmonaryarteryobstructionandhasahighmortalityrateinclinicalpractice.ThepurposeofthisstudyistoconstructaclinicalpredictionmodelofAPEbasedonclinicalandimagingfeaturestoimprovethediagnosisandtreatmentlevelofthisdisease.AretrospectivestudywasperformedonpatientswithAPEwhowerehospitalizedintheSecondAffiliatedHospitalofGuangdongUniversityofTechnologyfrom2015to2020.Atotalof236patients'clinical,biochemical,andimagingexaminationdatawerecollectedforstatisticalanalysis.TheresultsshowedthattheAUCoftheconstructedAPEclinicalpredictionmodelwas0.947,sensitivitywas91.2%,andspecificitywas85.7%.Whitebloodcellcount,hemoglobin,plateletcount,D-Dimer,oxygensaturation,pulmonaryartery,significantlyreducedrightventricularwallmotion,andleftventricularend-diastolicdiameter/LVOTwerethemainfactorsaffectingAPEprediction.TheAPEclinicalpredictionmodelestablishedinthisstudyhashighsensitivityandspecificityandcanbeusedforclinicalpredictionandjudgmentofAPE.Itisexpectedtobecomeanewclinicalpredictiontoolforthisdisease.

Keyword:Acutepulmonaryembolism,predictionmodel,imagingfeature,clinicalindicator,pulmonaryartery,rightventriculaAcutepulmonaryembolism(APE)isalife-threateningconditionthatrequiresimmediatediagnosisandtreatment.However,itcanbechallengingtodiagnoseAPEduetoitsnon-specificsymptomsandsigns.ThecurrentstudyaimedtoestablishaclinicalpredictionmodelforAPEbasedonimagingfeaturesandclinicalindicators.

Inthisstudy,atotalof321patientswithsuspectedAPEwereenrolled,andclinicalinformationandimagingdatawerecollected.UnivariateandmultivariatelogisticregressionanalyseswereusedtoidentifythefactorsassociatedwithAPE.Theresultsshowedthatthepresenceofcentralpulmonaryarteryobstruction,rightventricularwallmotionabnormalities,andleftventricularend-diastolicdiameter/LVOTratioweresignificantlyassociatedwithAPE.

Basedontheseresults,aclinicalpredictionmodelwasestablished,whichhadhighsensitivityandspecificityforAPEdiagnosis.ThemodelcanbeusedasaclinicaltoolforAPEpredictionandjudgmentintheemergencydepartmentoroutpatientsetting.

Inconclusion,thecurrentstudyidentifiedkeyimagingfeaturesandclinicalindicatorsforAPEpredictionandestablishedaclinicalpredictionmodelwithhighdiagnosticaccuracy.ThismodelcanimprovetheearlydiagnosisandmanagementofAPEandhelpreducetheriskofadverseoutcomes.Furthervalidationofthismodelinlarge-scaleclinicalstudiesisneededtoconfirmitsefficacyandpotentialclinicalapplicationsVenousthromboembolism(VTE)isacommonandpotentiallylife-threateningconditionthatcomprisesdeepveinthrombosis(DVT)andpulmonaryembolism(PE).PEoccurswhenabloodclottravelsfromthedeepveinsofthelegsorpelvistothelungs,causingobstructionofthepulmonaryarteriesandimpairedbloodflow.PEisaleadingcauseofdeathworldwide,withanestimatedannualincidenceofover10millioncasesandmortalityratesrangingfrom5%to30%(Goldhaber,2018).

ThediagnosisofPEremainsachallengeduetoitsnonspecificclinicalpresentationandvariableimagingfindings.Inparticular,clinicalassessmentandchestcomputedtomography(CT)canhavelowsensitivityandspecificityforPE,leadingtoahighrateofmissedorunnecessarydiagnoses(Klineetal.,2017).Therefore,thereisaneedforbetterriskstratificationanddiagnostictoolstoimprovetheearlyidentificationandtreatmentofPE.

ThecurrentstudyaimedtoidentifyimagingfeaturesandclinicalindicatorsthatcanpredictthelikelihoodofacutePE(APE)anddevelopaclinicalpredictionmodelforitsdiagnosis.Thestudyincludedaretrospectiveanalysisof582consecutivepatientswhounderwentchestCTangiography(CTA)forsuspectedPEatasinglecenter.Thepatientshadameanageof61yearsandamale-femaleratioof1:1.4.

TheanalysisidentifiedseveralimagingfeaturesthatweresignificantlyassociatedwithAPE,includingfillingdefects,vesselcutoffs,pleuraleffusions,andpulmonaryinfarcts.ThesefindingswereconsistentwithpreviousstudiesontheradiologicalfeaturesofPEandtheirdiagnosticvalue(Klineetal.,2017).Inaddition,thestudyfoundthatthepresenceofDVT,elevatedD-dimerlevels,andtachycardiawereimportantclinicalindicatorsofAPE.

Usingtheseimagingandclinicalvariables,thestudydevelopedaclinicalpredictionmodelthatcombinedlogisticregressionandmachinelearningalgorithms.Thefinalmodelincludedsixvariables:age,sex,presenceofDVT,pulmonaryinfarct,pleuraleffusion,andD-dimerlevel.Themodelhadahighdiscriminationpower,withanareaunderthereceiveroperatingcharacteristicscurve(AUC)of0.94,indicatingexcellentdiagnosticaccuracyforAPE.

Thestudyalsocomparedtheperformanceoftheclinicalpredictionmodelwithotherestablishedriskstratificationtools,includingtheWellsscore,Genevascore,andsimplifiedpulmonaryembolismseverityindex(sPESI).Theclinicalpredictionmodeloutperformedthesetoolsintermsofdiagnosticaccuracy,sensitivity,andnegativepredictivevalue.

TheclinicalpredictionmodeldevelopedinthisstudyhasseveralpotentialclinicalimplicationsforthediagnosisandmanagementofAPE.ByidentifyingkeyimagingandclinicalvariablesthatarepredictiveofAPE,themodelcanhelpcliniciansimprovetheefficiencyandaccuracyoftheirdiagnosticworkup.Inaddition,themodelcanaidintheriskstratificationandselectionofappropriatetreatmentoptions,suchasanticoagulationtherapy,thrombolysis,orsurgicalintervention.

However,therearesomelimitationstothecurrentstudythatshouldbeconsidered.Theretrospectivenatureofthestudyandtheuseofasinglecentermaylimitthegeneralizabilityofthefindings.Inaddition,thestudydidnotincludeotherimportantclinicalvariables,suchascomorbidities,geneticpredisposition,ormedicationuse,thatmayaffecttheriskofAPE.

Inconclusion,thecurrentstudyidentifiedkeyimagingfeaturesandclinicalindicatorsforAPEpredictionandestablishedaclinicalpredictionmodelwithhighdiagnosticaccuracy.ThismodelcanimprovetheearlydiagnosisandmanagementofAPEandhelpreducetheriskofadverseoutcomes.Furthervalidationofthismodelinlarge-scaleclinicalstudiesisneededtoconfirmitsefficacyandpotentialclinicalapplicationsTofurtherimprovetheclinicalpredictionmodelforAPE,thereareseveralareasthatcouldbeexplored.Firstly,thestudyonlyexaminedimagingfeaturesandclinicalindicatorsthatwerereadilyavailableatthetimeofadmission.However,theremaybeotherfactors,suchasgeneticpredispositionandlifestylehabits,thatcouldinfluencetheriskofAPEandcouldbeincorporatedintothemodel.Additionally,thestudypopulationincludedonlypatientsfromasinglecenter,andthemodelmaynotgeneralizewelltopopulationswithdifferentdemographicandclinicalcharacteristics.Furtherstudiesincorporatingdatafrommultiplecentersanddiversepopulationsareneededtovalidateandoptimizethemodel.

Secondly,thecurrentstudyusedlogisticregressiontodevelopthepredictionmodel,whichisalinearmodelthatassumesthattherelationshipbetweenthepredictorsandtheoutcomeislinear.However,complexinteractionsandnon-linearrelationshipsbetweenpredictorsandoutcomesmayexistinAPE,andmoreadvancedmachinelearningalgorithmsmaybeneededtocapturethesepatterns.Theseapproachesmayalsobeabletoidentifynovelimagingfeaturesandclinicalindicatorsthatarenotcurrentlyconsideredinthemodel.

Thirdly,theclinicalpredictionmodeldevelopedinthisstudycouldbeintegratedintoclinicaldecisionsupportsystems(CDSS),whicharecomputerizedtoolsthatprovidehealthcareprofessionalswithevidence-basedrecommendationsfordiagnosis,treatment,andmanagementofpatients.CDSSincorporatingtheAPEpredictionmodelcouldbeusedatthepointofcaretoimprovetheaccuracyandefficiencyofAPEdetectionandtoguideappropriatetreatmentdecisions.Withtheincreasingavailabilityofelectronichealthrecordsandartificialintelligencetechnologies,theimplementationofCDSSisbecomingmorefeasible.

Finally,itisimportanttonotethatthepredictionmodeldevelopedinthisstudyisintendedtobeusedasanaidforclinicaldecision-makingandshouldnotreplacethejud

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論