




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
March2023
ArtificialIntelligenceSectorStudy
ResearchreportfortheDepartment
forScience,Innovation&
Technology(DSIT)
Contents
IExecutiveSummary 2
1.Introduction 5
1.1.Methodology&Sources 5
1.2.Approach 5
1.3.InterpretationofData 6
1.4.Acknowledgements 7
2.UKArtificialIntelligenceSectorProfile 6
2.1.DefiningtheUKArtificialIntelligenceSector 6
2.2.NumberofUKAICompanies 8
3.LocationofUKAICompanies 17
3.1.AIActivitybyUKRegion 17
3.2.RegionalAIActivitybySector 18
3.3.InternationalActivity 19
4.EconomicContributionofUKAICompanies 22
4.1.EstimatedRevenue 22
4.2.EstimatedEmployment 26
4.3.EstimatedGrossValueAdded 30
4.4.SummaryofEconomicContribution 31
5.InvestmentinUKAICompanies 33
5.1.InvestmenttoDate 33
5.2.InvestmentMarketDynamics 41
6.FutureAISectorDevelopment 44
6.1.RecentSectorDevelopments 44
6.2.PotentialFutureSupport 45
6.3.SectorChallenges&Opportunities 46
6.4.FurtherSectorAnalysis,Monitoring&Evaluation 49
IExecutiveSummary
ThegovernmentcommissionedPerspectiveEconomics,glass.ai,IpsosandacademicexpertstoundertakearesearchstudytobetterunderstandtheprofileoftheUKAISectoranditscontributiontotheUKeconomy.Basedonacombinationofextensivecollectionandanalysisofsecondarydataandstrategicqualitativeresearchincludingasurveyof250UKAIbusinesses,and22in-depthinterviewswithAIbusinessesandstrategicstakeholders,thisreportprovidesabaselinesetofdataonthesizeandscaleoftheUK’sAIsector,intendedtosupportgovernment’songoingdevelopmentandmonitoringofkeyAIpolicies.
I.1HeadlineSectorMetrics
Thestudyhasidentifiedatotalof3,170UKAIcompaniesthatgenerated£10,6bninAIrelatedrevenues,employedmorethan50,000peopleinAIrelatedroles,generated£3.7bninGrossValueAddedandhavesecured£18.8bninprivateinvestmentsince2016.
FigureI.1–SectorHeadlines
I.2KeyFindings
ThereportprovidesfurtherbreakdownsofthesemetricsacrossUKregions,andaccordingtopredictedAIbusinessmodelsandtechnologicalcapabilities.Someofthemostsalientfindingsemergingfromthisbaselineresearchinclude:
?Atotalof3,170activeAIcompanieshavebeenidentifiedthroughthestudy.
?Ofthe3,170activecompaniesidentifiedthroughthestudy60%arededicatedAIbusinessesand40%arediversifiedi.e.,haveAIactivityaspartofabroaderdiversifiedproductorserviceoffer.
?Comparedtosimilarstudiesintootheremergingtechnologysectors,agreaterproportionofdiversifiedAIcompanieshavebeenidentified,highlightingthebroadscopefordevelopmentofAItechnologyapplicationsbyestablishedtechnologycompaniesacrosssectors.
?Onaverage269newAIcompanieshavebeenregisteredeachyearsince2011,withapeakinnewcompanyregistrationsinthesameyearastheAISectorDeal(2018,n=429).
?Together,thedataoncompanysizeandbusinessmodelsuggestthatdedicatedAIcompaniesarebothsmallerandmoredependentonAIproductsforrevenue.DiversifiedAIcompaniesaretypicallylargerandlikelytogenerateagreaterproportionofrevenuesfromlesscapital-intensiveprovisionofAIrelatedservices.
?London,theSouthEastandtheEastofEnglandaccountfor75%ofregisteredAIofficeaddresses,andalsofor74%oftradingaddresses.JustunderonethirdofAIcompanieswitharegisteredaddressoutsideofLondon,theSouthEastandtheEastofEnglandstillhaveatradingpresenceinthoseregions,highlightingtheapparentsignificanceofthoseregionstodevelopmentoftheUKAIsectortodate.
?Whileabsolutenumbersaresmaller,thestudyhasidentifiedmorenotableproportionsofwiderregionalAIactivityinautomotive,industrialautomation&machinery;energy,utilitiesandrenewables;health,wellbeingandmedicalpractice,andagriculturaltechnology.
?Inthemostrecentfinancialyear,annualrevenuesgeneratedspecificallyfromAIrelatedactivitybyUKAIcompaniestotalledanestimated£10.6billion,splitapproximately50/50betweendedicatedanddiversifiedcompanies.
?AcrossbothdedicatedanddiversifiedAIcompanies,studyestimatessuggestthatthereare50,040FullTimeEquivalents(FTEs)employedinAIrelatedroles,53%ofwhicharewithindedicatedAIcompanies.
?Basedonacombinationofofficialcompanydata,surveyresponsesandassociatedmodelling,AIcompaniesareestimatedtocontribute£3.7bninGVAtotheUKeconomy.ForlargecompaniestheGVA-to-turnoverratiois0.6:1(i.e.,forevery£1ofrevenue,largeAIcompaniesgenerate60pindirectGVA).GVA-to-turnoverratiosamongSMEsaremuchlower(0.2:1formediumsizedcompaniesandnegativeforsmallandmicrobusinesses),whichreflectsthecapitalintensive,highR&Dnatureofdeeptechnologydevelopment.
?Since2016,AIcompanieshavesecuredatotalof£18.8bninprivateinvestment.2021wasarecordyearforAIinvestment,withover£5bnraisedacross768deals,representing
anaveragedealsizeof£6.7m.Further,AIinvestmentincreasedalmostfive-foldbetween2019and2021.
?In2022dedicatedAIcompaniessecuredahigheraveragedealvaluethandiversifiedcompaniesforthefirsttime.However,dataonAIinvestmentbystageofevolutionmayalsobesignallingsometighteningofinvestmentavailabletoSeedandVentureStagecompaniesand,giventhesignificanceofprivateinvestmentforAItechnologydevelopmentevidencedbydataonrevenuesandGVA,thiscouldposearisktorealisingthepotentialwithinearly-stageAIcompanies.
?ThestudyhighlightedanotableopportunityforcompaniesoperatingintheAIimplementationspacetobuildteamsofAIimplementationexpertsthatcansupportAIadoptionopportunitiesacrosssectors.Thisadoptionopportunityissupportedbyinvestmentdata,whichhighlightsthatin2022investmentsweremadein52uniqueindustrysectors,comparedtoinvestmentsacrossjust35differentsectorsin2016.
1.Introduction
PerspectiveEconomics,incollaborationwithIpsos,glass.ai,andProfessorsRobProcter(UniversityofWarwick)andRogerWoods(Queen’sUniversityBelfast)werecommissionedinAugust2022todeliveranassessmentoftheUK’sartificialintelligence(AI)sector.
Theaimofthestudyistobetterunderstandthescale,profileandeconomiccontributionofUK’sAISector,andtoprovideabaselinesetofdatathatcansupportgovernment’songoingdevelopmentandmonitoringofkeyAIpolicies.
AItechnologieshavebeenindevelopmentfordecades,howevertheirtransformativepotentialisbeingincreasinglyrealisedthroughdevelopment,applicationandpublicdebateregardingevermoresophisticatedmachinelearningsoftware.ThisreportisthereforetimelygiventheimportanceofgovernmentpolicyregardingtheethicalandregulatoryparameterswithinwhichAItechnologiesaredevelopedandappliedintheUK.
1.1.Methodology&Sources
Thestudyhasbeendesignedtoprovideinsightintothefollowingsetofcoreresearchquestions:
?HowmuchdoestheUK’sAISectorcontributetotheUKeconomy,includingrevenue,employment,GrossValueAdded(GVA),exportsandR&Dspending?
?WhatisthecompositionoftheUK’sAIsector,intermsofbusinesssize,location,andproductoffering?
?Whathavebeenthedriversofgrowthinthemarket,andwhatarethekeyupcomingchallenges?
Itisanticipatedthattheresearchwillbereplicatedinsubsequentyearsandassuch,themethodologyfordatacollectionandanalysisiswhollytransparentandrepeatable.
1.2.Approach
Thestudyusesamixedmethodsapproach,combiningacademia,policyandinvestmentspheres.Keymethodologicalstepsaresummarisedbelow,withfullerdetailprovidedinappendicestothereport.
Stage1–Collationofinitialdatainputs:along-listofAIcompaniesdeemedtobepotentiallywithinthescopeofthestudywasidentifiedfromnumeroussources,predominantlyviawebintelligencegeneratedbyGlass.ai’sweb-readingcapabilities.JustunderonethirdofcompanieswerealsoidentifiedviaothersourcesincludingbutnotlimitedtoBureauvanDijk’sFAME,Beauhurst,Crunchbase,LightcastandFDIMarkets.
Stage2–Initialclassificationandfiltering:AsetofkeywordsandcategorieswereidentifiedthroughacombinationofautomatedclassificationusingGlass.ailanguagemodelsandworkshopsessionswithrepresentativesfromacademia,industry,governmentandthecore
studyteam.Thelong-listofpotentiallyin-scopefirmswasrefinedandfilteredtoprovideashortlistof3,170in-scopeAIcompanies.
Stage3–Surveydesignandadministration:adetailedbusinesssurveywasdesignedwithinputfromthestudysteeringgroup,includingrepresentativesfromDSITandacademicandcommercialresearchexpertise.Thesurveywasadministeredviamultiplechannels,includingviatelephone,e-mailandweb-hosting.Atotalof250responseswerereceived.
Stage4–Dataaugmentation:aseriesofmanualdataqualitycheckswereconductedacrosskeymetrics(revenue,employment,location,classification)byboththecorestudyteamandDSITanalysts.Companydatawasthenaugmentedusingmultipledatasources,providingaconsistentsetofkeymetricsforeachUKAIbusiness.
Figure1.1–Shortlisting&AugmentationOverview
Source:PerspectiveEconomics
Stage5–Regional&sub-sectoralanalysis:moregranulardataonthetradinglocationsofin-scopeAIcompanieswasgatheredthroughweb-intelligenceandproprietarydatasources,enablingamoredetailedanalysisofthetradingpresenceofUKAIcompanieslocally,andinternationally.
Stage6–Sectormodelling:Theshort-listedAIcompanysetwasusedtoproduceanalysesofthenumber,scaleandlocationofUKAIcompanies,incorporations,investment,R&Dexpenditureandexports.
Stage7–Qualitativeinterviews&casestudies:in-depthfollow-upinterviewswereconductedwith10AIcompaniesthatrespondedtothesurvey.Findingswerecombinedwiththosefrom10in-depthsemi-structuredstrategicstakeholderinterviewstoaddressqualitativeresearchquestionsregardingstrengths,weaknesses,opportunities,challengesandriskstotheUKAIsector.
Stage8–Analysis&reporting:findingsfromthequantitativeandqualitativeresearchweresynthesisedthroughsteeringgroupdiscussionsandqualitativeanalysissessionsandtriangulatedtoinformthisbaselinereport.
1.3.InterpretationofData
ArtificialIntelligenceactivityintheUKisnotdefinedbyaformalStandardIndustrialClassification(SIC)code1.ThisstudythereforeusesexperimentalmethodstoidentifyandquantifyAIactivityacrosstraditionaleconomicsectors.Theapproachandmethodologyare
1SICcodesarethecurrentsystemofclassifyingbusinessestablishmentsandotherstatisticalunitsbytypeofeconomicactivityinwhichtheyareengaged.
consistentwiththoseemployedtodeliveranalysesoftheUKcybersecuritysectorannuallysince20182.Thedatausedtoinformthestudyincludes:
?IdentificationofAIfirmsaccordingtoanagreedtaxonomyusingAIdrivenlanguagemodelsappliedacrosswebsites,news,socialmedia,academicandofficialsources.
?EnrichmentofwebdatausingopenandproprietarydatasourcesincludingCompaniesHouse(companyname,registrationnumber,locations,incorporationdate),BureauvanDijkFAME(revenue,employment,profitability,remuneration,R&Dspend)andBeauhurst(externalgrants,fundraisings,acceleratorattendance,M&Aactivity).
Acrossthisreport,percentagesfromthequantitativedatamaynotaddto100%duetoroundingand/ortheoptiontoselectmultipleresponsestocertainsurveyquestions.ItisalsoimportanttonotethatthesurveydataisbasedonasampleofAIcompaniesandarethereforesubjecttosamplingtolerances.Theoverallmarginoferrorforthesampleof250AIcompanies(withinapopulationof3,170companies)isbetweenc.3andc.6percentagepointsata95%confidencelevel.Thelowerendofthisrange(3percentagepoints)isusedforsurveyestimatescloserto10%or90%.Thehigherend(6percentagepoints)isusedforsurveyestimatesaround50%.Datafromthe22qualitativeconsultationsisintendedtobeillustrativeofthekeythemesaffectingAIactivityintheUKgenerally,ratherthanastatisticallyrepresentativeviewofAIsectorbusinessesorinvestors.
1.4.Acknowledgements
TheauthorswouldliketothanktheDSITteamfortheirsupportacrossthestudy.DSITandthereportauthorswouldalsoliketothankallthosewhocontributedtotheresearch,includingthosewhotookpartinin-depthstrategicstakeholderinterviews,respondedtothebusinesssurvey,orotherwiseofferedintelligenceandinsightstothestudy.
Note:Thisreportusesexperimentalmethodstodefine,scopeandmeasurethescale
oftheUK’sAIsector.Wethereforewelcomecommentsandfeedbackregardingthe
methodologyorfindingsherein,throughcontacting
digital-analysis-team@.uk
.
2DSIT(2022)CyberSecuritySectoralAnalysis2022,accessibleat[.uk/government/publications/cyber-security-sectoral-analysis-2022]
2.UKArtificialIntelligenceSectorProfile
TheNationalAIStrategydescribesArtificialIntelligence(AI)asthe“fastestgrowingdeeptechnologyintheworld,withhugepotentialtorewritetherulesofentireindustries,drivesubstantialeconomicgrowthandtransformallareasoflife”3.Recognisingchallenges,limitationsandquestionablevalueoftryingtotightlydefineAI,theAIregulationpolicypaper–Establishingapro-innovationapproachtoregulatingAI4–describesAIas“ageneral-purposetechnologylikeelectricity,theinternetandthecombustionengine.”ItdefinesthecorecharacteristicsofAIasthe‘a(chǎn)daptiveness’and‘a(chǎn)utonomy’ofthetechnologyi.e.,thatAItechnologycanoperateonthebasisofinstructionswhichhavebeenlearntratherthanprogrammed,andthatcanbeautonomouslyappliedwithindynamicandfast-movingenvironments.
2.1.DefiningtheUKArtificialIntelligenceSector
TheanalysescontainedinthisreportarebasedonacommerciallyorientedtaxonomyofAIactivityintheUK.The‘commerciallyoriented’distinctionismadegiventhecommercialnatureofthelanguageusedtoinformthisstudy(drawnfromwebandtrade-baseddescriptionsofcompanyactivity),vis-à-vismoretechnicalterminologythatiscurrentlybeingusedinparallelactivitytobetterunderstandresearch-relatedtechnologicalAIdevelopments.Asdiscussedfurtheroverleaf,thestudysegmentscompaniesaccordingtoanagreedtaxonomy,includingadelineationbetween‘dedicated’and‘diversified’AIcompanies.Table2.1providesanillustrationofsomeofthemostprominentdedicatedanddiversifiedAIcompaniesidentified.
Table2.1–KeyAISectorContributors–Dedicated&Diversified
Dedicated
Diversified
1DeepMind
1FacebookUK
2
LimeJump
2
IBMUK
3LoopMe
3Microsoft
4
Peak
4
GoogleUK
5Ivefi.ai
5Accenture
6
Lendable
6
Amazon
7Deloitte
7EquippedAI
8
Improbable
8
Vodafone
9Cognizant
9Exscientia
10
Tractable
10
BT
Source:Glass.ai,PerspectiveEconomics
3DSIT(2021)NationalAIStrategy,DepartmentforScienceInnovation&Technology.
4.uk/government/publications/establishing-a-pro-innovation-approach-to-regulating-ai/establishing-a-pro-innovation-approach-to-regulating-ai-policy-statement
ThetaxonomyusedtodescribeAIactivityinthisstudyisillustratedinFigure2.1.SalientpointstonoteregardingthetaxonomyarediscussedbelowFigure2.1,andthefulltaxonomyisalsoavailabletoviewintheappendicestothisreport.
Figure2.1–UKAITaxonomy
Source:PerspectiveEconomics
Foreaseofreference,salientpointsregardingthesectortaxonomyinclude:
?Pre-requisitesforinclusion:TobeincludedinthestudycompaniesmustberegisteredandhaveanactivepresenceintheUK.
?DedicatedvsDiversifiedAIcompanies:atthehighestlevel,thetaxonomysegmentsthebusinesspopulationaccordingtowhethertheyareadedicatedAIcompany,orwhetherAIactivitymakesupasmallerproportionofamuchbroadercommercialbusinessoffering.DedicatedAIcompaniesareconsideredtobebusinessesthatprovideaproprietaryAItechnicalservice,product,platformorhardwareastheirprimaryrevenuesource.
?AIBusinessModel:atalowerlevelthetaxonomysegmentsbetweencreatorsofAIinfrastructure5,developersofAIproducts6andAIserviceproviders7.AdoptersofAIproductsorservicesdevelopedbyothersareconsideredtobeoutsidethescopeofthisstudytoavoiddoublecountingandtohelpensurethattheanalysisispredominantlyfocussedonvalueaddedtotheUKeconomybyAIsectoractivity.
5Includinghardware,frameworks,software,librariesandplatforms.
6Companiesproducingbespoke,valueaddingAIsolutionsmarketedandsoldasproducts.
7CompaniesofferingskillsandexpertisetosupporttheadoptionofAIproducts.
?AICapabilities:theanalysescontainedinthereportsegmentAIsectoractivityaccordingtothemaintechnologicalcapabilitythatunderpinsbusinessmodels.WhilemanyofthecompaniesidentifiedemploymultipleAIcapabilities,languagemodelswereadjustedtoidentifyboththeforemostAIcapability,aswellasallothercapabilitiesmentioned.MachineLearningisagenerictermthatunderpinsallothercapabilities.Itisincludedasacategoryherebecauseinmanyinstancesdescriptivecompanyinformation(thebasisofclassification)doesnotfurtherspecifytechnicalcapabilities.
?Industries:tosupportcomparativeanalyseswithSICbasedeconomicdataeachcompanyisalsoassignedtoasingleindustrywhichisderivedfromandcanbemappedbacktoSICCodes.
Inaddition,eachin-scopecompanyhasbeenclassifiedintoindustrysectorsusingGlass.ai’sproprietarytopicontologies.ThemostprominentindustrysectorsreferredtoinSection3arelistedbelowandasummaryofcompaniesassignedtobothGlass.aisectorsandStandardIndustrialClassification(SIC)codesareavailableintheappendices.
?ComputerSoftware
?InformationTechnologyandServices
?Biotechnology,LifeSciences&Pharma
?FinancialServices
?ProfessionalServices
?WiderHealth&MedicalPractice
?R&DandScientific
?Automotive,IndustrialAutomation&Machinery
?Energy,Utilities&Renewables
?AgriculturalTechnology
2.2.NumberofUKAICompanies
BasedonacombinationofAIdrivenwebintelligence,andcollationofcompanydatafromnumerousopenandproprietarysourcesincludingCompaniesHouse,BureauvanDijk,BeauhurstandLightcast,weestimatethattherearecurrently3,170activecompaniesintheUKprovidingAIinfrastructures,productsandservices.Aspreviouslystated,thisfocussesspecificallyonvalue-addedbytheAIsectoranddoesnotthereforeincludethewidervalueaddedbyadoptionofAItechnologiesacrossothersectors.
2.2.1.RegisteredCompaniesbySize
Ninety-sixpercentofthecompanies
identifiedareSMEs;60%ofall
companiesaremicrobusinesses
(Figure2.2).
Consultationwithstrategic
stakeholdersfromacrossindustry,
academiaandpolicyspheres
pointedtothepresenceofa
significantnumberoflarge
technologyfirmsasakeystrengthof
theUK’sAIecosystem,deemedto
beatleastinpartduetotheUK’s
reputationforhighqualityscientific
researchandinnovation.This
assertionissupportedbya
comparisonofthesizeofcompaniesin
theAIsectorvis-à-visthebroaderUKbusinesspopulation8(Table2.1).ThetablebelowevidencesthattheAIsectorhasagreaterconcentrationoflarge,mediumandsmallbusinessesthanthegeneralUKBusinesspopulation.
Table2.1–AISizeProfileComparison
Size
UKBusiness
Population
Estimates(2022)
Percentage
AISectoral
Analysis
Percentage
Large(250+
employees)
7,675
<1%
132
4%
Medium(50-249)
35,940
3%
262
8%
Small(10-49)
217,240
15%
887
28%
Micro(1-9)
1,187,045
82%
1,889
60%
AllBusinesseswithatleast1employee
1,447,900
100%
3,170
100%
Source:ONS,Glass.ai
8UKBusinessPopulationEstimates(2022):Availableat:
.uk/government/statistics/business-population-
estimates-2022
2.2.2.Dedicated&DiversifiedAICompanies
Ofthe3,170activecompaniesFigure2.3–DedicatedandDiversifiedAICompanies
identifiedthroughthestudy60%are
dedicatedAIbusinessesand40%are
diversified(i.e.,haveAIactivityas
partofabroaderdiversifiedproduct
orserviceoffer,Figure2.3).
Incomparisontoothersimilarstudies
theproportionofdiversified
companieswithintheAIsectoris
higher.Thisisindicativeofthe
comparativelybroadscopeforAI
technologyapplicationsacross
sectors,andpointstoanintense
focusondevelopmentofAI
technologyamongbothdedicated
companies(e.g.,DeepMind,Source:Glass.ai,PerspectiveEconomics(n=3,170)
Improbable,BenevolentAI)and
established,diversifiedtechnologycompanieswithmuchbroaderserviceoffers(e.g.,Amazon,Google,Microsoft,IBM)9.
Figure2.4overleafshowsthatmostlargeAIcompaniesarediversified(89%,n=118),whereasthemajorityofmicro-AIcompaniesarededicated,meaningthatAIiscoretotheirbusinessmodel(68%,n=1,288).
9Itisworthnotingherethat,giventhebreadthandvaryingscaleofAIactivity,itisnotpossibletodelineatededicatedanddiversifiedAIfirmssolelyonthebasisoftheproportionofAIrelatedrevenueoremploymentwithincompanies.CompanieswithrelativelysmallAIteamscanbededicatedAIcompaniesandbythesametoken,companieswithlargeAIteamscanbediversified.Thereforeinstead,thestudyusedacombinationofdataonAIrelatedemploymentandadetailedmanualreviewofcompanydescriptionsasthebasisoffinaldecisionsonwhetherornotacompanyfallsintothededicatedordiversifiedcategory.
Figure2.4–AICompanySize
Source:Glass.ai,PerspectiveEconomics(n=3,170)
2.2.3.AICompanyRegistrations
AnalysisofincorporationdatesacrossthepopulationofAIcompaniesshowssignificantgrowthinAIcompanyregistrationssince2011.Onaverage,269newAIcompanieshavebeenregisteredeachyearsince2011,withapeakinnewcompanyregistrationsinthesameyearastheAISectorDeal(2018,n=429)andsmallernumbersofnewcompanyregistrationssince(Figure2.5overleaf)10.
10Analysisexcludes2022duetodatagapsassociatedwiththenormallaginavailabilityofcompanydata.
Figure2.5–AICompanyRegistrations
Source:PerspectiveEconomics,Glass.ai,CompaniesHouse(1998–2021|n=3,030
companiesincorporatedsince1998)
2.2.4.PredictedAIBusinessModel
ThetaxonomycanbeusedtobetterunderstandtheprofileoftheAIsectoraccordingtothebroadfocusofAIactivity(i.e.,infrastructure,productsorservices)andatalower-level,categorisationofthecorecapabilityofin-scopecompanies.Figure2.6overleafpresentsthetwomaintaxonomylevelsasanexcerptforeaseofreference.Analysesthatfollowfocusonthebusinessmodelsandcapabilitiesofcompaniesincludedinthefinaldataset.EachcompanyisassignedtoasinglebusinessmodelandcapabilitybasedonthehighestprobablecategorisationusingthelanguagemodelsdevelopedbyGlass.ai.
Figure2.6–AIBusinessModels&Capabilities
Source:Glass.ai,TaxonomyWorkshopOutputs
Acrosstheentirepopulation82%ofcompaniesfallwithinthebusinessmodelcategoriesofAIproductsandinfrastructures(72%and11%respectively),withtheremaining18%engagedpredominantlyinprovidingAI-relatedservices11.AgreaterproportionofdedicatedAIcompaniesprimarilyproduceAIrelatedproducts(75%ofdedicatedcompaniescomparedto66%ofdiversifiedcompanies).Together,thedataoncompanysizeandbusinessmodelsuggestthatdedicatedAIcompaniesarebothsmallerandmoredependentonthesuccessoftheAIproductsthe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度股份代持與股權(quán)激勵(lì)實(shí)施方案協(xié)議
- 2025年度足療中心員工工資保底與員工滿意度調(diào)查協(xié)議
- 房產(chǎn)證抵押貸款額度調(diào)整協(xié)議(2025年度)
- 2025年度食品包裝設(shè)計(jì)及委托加工合同
- 二零二五年度儲(chǔ)蓄存款業(yè)務(wù)創(chuàng)新激勵(lì)機(jī)制合同
- 二零二五年度銀行賬戶監(jiān)管協(xié)議:銀行賬戶資金監(jiān)管與網(wǎng)絡(luò)安全保障合同
- 二零二五年度智能物流件代發(fā)合作協(xié)議
- 二零二五年度體育賽事運(yùn)營(yíng)補(bǔ)充協(xié)議范本
- 二零二五年度茶飲連鎖品牌全國(guó)代理權(quán)獨(dú)家協(xié)議
- 幼兒園學(xué)生人身安全賠償協(xié)議范本2025
- 2025年三八婦女節(jié)校長(zhǎng)致辭-以柔韌破萬鈞以丹心育桃李
- 2025年浙江省建筑安全員C證考試(專職安全員)題庫及答案
- 2025年健身教練合同協(xié)議樣本
- 2025年常州工業(yè)職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(培優(yōu))
- 2025年湖南商務(wù)職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫必考題
- 旅游景區(qū)旅游安全風(fēng)險(xiǎn)評(píng)估報(bào)告
- DZ∕T 0148-2014 水文水井地質(zhì)鉆探規(guī)程(正式版)
- 2024年黑龍江職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫及答案解析
- 大班-數(shù)學(xué)-分禮物-課件(互動(dòng)版)
- 2024年山東力明科技職業(yè)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 2023年新改版教科版四年級(jí)下冊(cè)科學(xué)練習(xí)題(一課一練+單元+期中+期末)
評(píng)論
0/150
提交評(píng)論