2022年人工智能行業(yè)研究:主要報(bào)告_第1頁
2022年人工智能行業(yè)研究:主要報(bào)告_第2頁
2022年人工智能行業(yè)研究:主要報(bào)告_第3頁
2022年人工智能行業(yè)研究:主要報(bào)告_第4頁
2022年人工智能行業(yè)研究:主要報(bào)告_第5頁
已閱讀5頁,還剩85頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

March2023

ArtificialIntelligenceSectorStudy

ResearchreportfortheDepartment

forScience,Innovation&

Technology(DSIT)

Contents

IExecutiveSummary 2

1.Introduction 5

1.1.Methodology&Sources 5

1.2.Approach 5

1.3.InterpretationofData 6

1.4.Acknowledgements 7

2.UKArtificialIntelligenceSectorProfile 6

2.1.DefiningtheUKArtificialIntelligenceSector 6

2.2.NumberofUKAICompanies 8

3.LocationofUKAICompanies 17

3.1.AIActivitybyUKRegion 17

3.2.RegionalAIActivitybySector 18

3.3.InternationalActivity 19

4.EconomicContributionofUKAICompanies 22

4.1.EstimatedRevenue 22

4.2.EstimatedEmployment 26

4.3.EstimatedGrossValueAdded 30

4.4.SummaryofEconomicContribution 31

5.InvestmentinUKAICompanies 33

5.1.InvestmenttoDate 33

5.2.InvestmentMarketDynamics 41

6.FutureAISectorDevelopment 44

6.1.RecentSectorDevelopments 44

6.2.PotentialFutureSupport 45

6.3.SectorChallenges&Opportunities 46

6.4.FurtherSectorAnalysis,Monitoring&Evaluation 49

IExecutiveSummary

ThegovernmentcommissionedPerspectiveEconomics,glass.ai,IpsosandacademicexpertstoundertakearesearchstudytobetterunderstandtheprofileoftheUKAISectoranditscontributiontotheUKeconomy.Basedonacombinationofextensivecollectionandanalysisofsecondarydataandstrategicqualitativeresearchincludingasurveyof250UKAIbusinesses,and22in-depthinterviewswithAIbusinessesandstrategicstakeholders,thisreportprovidesabaselinesetofdataonthesizeandscaleoftheUK’sAIsector,intendedtosupportgovernment’songoingdevelopmentandmonitoringofkeyAIpolicies.

I.1HeadlineSectorMetrics

Thestudyhasidentifiedatotalof3,170UKAIcompaniesthatgenerated£10,6bninAIrelatedrevenues,employedmorethan50,000peopleinAIrelatedroles,generated£3.7bninGrossValueAddedandhavesecured£18.8bninprivateinvestmentsince2016.

FigureI.1–SectorHeadlines

I.2KeyFindings

ThereportprovidesfurtherbreakdownsofthesemetricsacrossUKregions,andaccordingtopredictedAIbusinessmodelsandtechnologicalcapabilities.Someofthemostsalientfindingsemergingfromthisbaselineresearchinclude:

?Atotalof3,170activeAIcompanieshavebeenidentifiedthroughthestudy.

?Ofthe3,170activecompaniesidentifiedthroughthestudy60%arededicatedAIbusinessesand40%arediversifiedi.e.,haveAIactivityaspartofabroaderdiversifiedproductorserviceoffer.

?Comparedtosimilarstudiesintootheremergingtechnologysectors,agreaterproportionofdiversifiedAIcompanieshavebeenidentified,highlightingthebroadscopefordevelopmentofAItechnologyapplicationsbyestablishedtechnologycompaniesacrosssectors.

?Onaverage269newAIcompanieshavebeenregisteredeachyearsince2011,withapeakinnewcompanyregistrationsinthesameyearastheAISectorDeal(2018,n=429).

?Together,thedataoncompanysizeandbusinessmodelsuggestthatdedicatedAIcompaniesarebothsmallerandmoredependentonAIproductsforrevenue.DiversifiedAIcompaniesaretypicallylargerandlikelytogenerateagreaterproportionofrevenuesfromlesscapital-intensiveprovisionofAIrelatedservices.

?London,theSouthEastandtheEastofEnglandaccountfor75%ofregisteredAIofficeaddresses,andalsofor74%oftradingaddresses.JustunderonethirdofAIcompanieswitharegisteredaddressoutsideofLondon,theSouthEastandtheEastofEnglandstillhaveatradingpresenceinthoseregions,highlightingtheapparentsignificanceofthoseregionstodevelopmentoftheUKAIsectortodate.

?Whileabsolutenumbersaresmaller,thestudyhasidentifiedmorenotableproportionsofwiderregionalAIactivityinautomotive,industrialautomation&machinery;energy,utilitiesandrenewables;health,wellbeingandmedicalpractice,andagriculturaltechnology.

?Inthemostrecentfinancialyear,annualrevenuesgeneratedspecificallyfromAIrelatedactivitybyUKAIcompaniestotalledanestimated£10.6billion,splitapproximately50/50betweendedicatedanddiversifiedcompanies.

?AcrossbothdedicatedanddiversifiedAIcompanies,studyestimatessuggestthatthereare50,040FullTimeEquivalents(FTEs)employedinAIrelatedroles,53%ofwhicharewithindedicatedAIcompanies.

?Basedonacombinationofofficialcompanydata,surveyresponsesandassociatedmodelling,AIcompaniesareestimatedtocontribute£3.7bninGVAtotheUKeconomy.ForlargecompaniestheGVA-to-turnoverratiois0.6:1(i.e.,forevery£1ofrevenue,largeAIcompaniesgenerate60pindirectGVA).GVA-to-turnoverratiosamongSMEsaremuchlower(0.2:1formediumsizedcompaniesandnegativeforsmallandmicrobusinesses),whichreflectsthecapitalintensive,highR&Dnatureofdeeptechnologydevelopment.

?Since2016,AIcompanieshavesecuredatotalof£18.8bninprivateinvestment.2021wasarecordyearforAIinvestment,withover£5bnraisedacross768deals,representing

anaveragedealsizeof£6.7m.Further,AIinvestmentincreasedalmostfive-foldbetween2019and2021.

?In2022dedicatedAIcompaniessecuredahigheraveragedealvaluethandiversifiedcompaniesforthefirsttime.However,dataonAIinvestmentbystageofevolutionmayalsobesignallingsometighteningofinvestmentavailabletoSeedandVentureStagecompaniesand,giventhesignificanceofprivateinvestmentforAItechnologydevelopmentevidencedbydataonrevenuesandGVA,thiscouldposearisktorealisingthepotentialwithinearly-stageAIcompanies.

?ThestudyhighlightedanotableopportunityforcompaniesoperatingintheAIimplementationspacetobuildteamsofAIimplementationexpertsthatcansupportAIadoptionopportunitiesacrosssectors.Thisadoptionopportunityissupportedbyinvestmentdata,whichhighlightsthatin2022investmentsweremadein52uniqueindustrysectors,comparedtoinvestmentsacrossjust35differentsectorsin2016.

1.Introduction

PerspectiveEconomics,incollaborationwithIpsos,glass.ai,andProfessorsRobProcter(UniversityofWarwick)andRogerWoods(Queen’sUniversityBelfast)werecommissionedinAugust2022todeliveranassessmentoftheUK’sartificialintelligence(AI)sector.

Theaimofthestudyistobetterunderstandthescale,profileandeconomiccontributionofUK’sAISector,andtoprovideabaselinesetofdatathatcansupportgovernment’songoingdevelopmentandmonitoringofkeyAIpolicies.

AItechnologieshavebeenindevelopmentfordecades,howevertheirtransformativepotentialisbeingincreasinglyrealisedthroughdevelopment,applicationandpublicdebateregardingevermoresophisticatedmachinelearningsoftware.ThisreportisthereforetimelygiventheimportanceofgovernmentpolicyregardingtheethicalandregulatoryparameterswithinwhichAItechnologiesaredevelopedandappliedintheUK.

1.1.Methodology&Sources

Thestudyhasbeendesignedtoprovideinsightintothefollowingsetofcoreresearchquestions:

?HowmuchdoestheUK’sAISectorcontributetotheUKeconomy,includingrevenue,employment,GrossValueAdded(GVA),exportsandR&Dspending?

?WhatisthecompositionoftheUK’sAIsector,intermsofbusinesssize,location,andproductoffering?

?Whathavebeenthedriversofgrowthinthemarket,andwhatarethekeyupcomingchallenges?

Itisanticipatedthattheresearchwillbereplicatedinsubsequentyearsandassuch,themethodologyfordatacollectionandanalysisiswhollytransparentandrepeatable.

1.2.Approach

Thestudyusesamixedmethodsapproach,combiningacademia,policyandinvestmentspheres.Keymethodologicalstepsaresummarisedbelow,withfullerdetailprovidedinappendicestothereport.

Stage1–Collationofinitialdatainputs:along-listofAIcompaniesdeemedtobepotentiallywithinthescopeofthestudywasidentifiedfromnumeroussources,predominantlyviawebintelligencegeneratedbyGlass.ai’sweb-readingcapabilities.JustunderonethirdofcompanieswerealsoidentifiedviaothersourcesincludingbutnotlimitedtoBureauvanDijk’sFAME,Beauhurst,Crunchbase,LightcastandFDIMarkets.

Stage2–Initialclassificationandfiltering:AsetofkeywordsandcategorieswereidentifiedthroughacombinationofautomatedclassificationusingGlass.ailanguagemodelsandworkshopsessionswithrepresentativesfromacademia,industry,governmentandthecore

studyteam.Thelong-listofpotentiallyin-scopefirmswasrefinedandfilteredtoprovideashortlistof3,170in-scopeAIcompanies.

Stage3–Surveydesignandadministration:adetailedbusinesssurveywasdesignedwithinputfromthestudysteeringgroup,includingrepresentativesfromDSITandacademicandcommercialresearchexpertise.Thesurveywasadministeredviamultiplechannels,includingviatelephone,e-mailandweb-hosting.Atotalof250responseswerereceived.

Stage4–Dataaugmentation:aseriesofmanualdataqualitycheckswereconductedacrosskeymetrics(revenue,employment,location,classification)byboththecorestudyteamandDSITanalysts.Companydatawasthenaugmentedusingmultipledatasources,providingaconsistentsetofkeymetricsforeachUKAIbusiness.

Figure1.1–Shortlisting&AugmentationOverview

Source:PerspectiveEconomics

Stage5–Regional&sub-sectoralanalysis:moregranulardataonthetradinglocationsofin-scopeAIcompanieswasgatheredthroughweb-intelligenceandproprietarydatasources,enablingamoredetailedanalysisofthetradingpresenceofUKAIcompanieslocally,andinternationally.

Stage6–Sectormodelling:Theshort-listedAIcompanysetwasusedtoproduceanalysesofthenumber,scaleandlocationofUKAIcompanies,incorporations,investment,R&Dexpenditureandexports.

Stage7–Qualitativeinterviews&casestudies:in-depthfollow-upinterviewswereconductedwith10AIcompaniesthatrespondedtothesurvey.Findingswerecombinedwiththosefrom10in-depthsemi-structuredstrategicstakeholderinterviewstoaddressqualitativeresearchquestionsregardingstrengths,weaknesses,opportunities,challengesandriskstotheUKAIsector.

Stage8–Analysis&reporting:findingsfromthequantitativeandqualitativeresearchweresynthesisedthroughsteeringgroupdiscussionsandqualitativeanalysissessionsandtriangulatedtoinformthisbaselinereport.

1.3.InterpretationofData

ArtificialIntelligenceactivityintheUKisnotdefinedbyaformalStandardIndustrialClassification(SIC)code1.ThisstudythereforeusesexperimentalmethodstoidentifyandquantifyAIactivityacrosstraditionaleconomicsectors.Theapproachandmethodologyare

1SICcodesarethecurrentsystemofclassifyingbusinessestablishmentsandotherstatisticalunitsbytypeofeconomicactivityinwhichtheyareengaged.

consistentwiththoseemployedtodeliveranalysesoftheUKcybersecuritysectorannuallysince20182.Thedatausedtoinformthestudyincludes:

?IdentificationofAIfirmsaccordingtoanagreedtaxonomyusingAIdrivenlanguagemodelsappliedacrosswebsites,news,socialmedia,academicandofficialsources.

?EnrichmentofwebdatausingopenandproprietarydatasourcesincludingCompaniesHouse(companyname,registrationnumber,locations,incorporationdate),BureauvanDijkFAME(revenue,employment,profitability,remuneration,R&Dspend)andBeauhurst(externalgrants,fundraisings,acceleratorattendance,M&Aactivity).

Acrossthisreport,percentagesfromthequantitativedatamaynotaddto100%duetoroundingand/ortheoptiontoselectmultipleresponsestocertainsurveyquestions.ItisalsoimportanttonotethatthesurveydataisbasedonasampleofAIcompaniesandarethereforesubjecttosamplingtolerances.Theoverallmarginoferrorforthesampleof250AIcompanies(withinapopulationof3,170companies)isbetweenc.3andc.6percentagepointsata95%confidencelevel.Thelowerendofthisrange(3percentagepoints)isusedforsurveyestimatescloserto10%or90%.Thehigherend(6percentagepoints)isusedforsurveyestimatesaround50%.Datafromthe22qualitativeconsultationsisintendedtobeillustrativeofthekeythemesaffectingAIactivityintheUKgenerally,ratherthanastatisticallyrepresentativeviewofAIsectorbusinessesorinvestors.

1.4.Acknowledgements

TheauthorswouldliketothanktheDSITteamfortheirsupportacrossthestudy.DSITandthereportauthorswouldalsoliketothankallthosewhocontributedtotheresearch,includingthosewhotookpartinin-depthstrategicstakeholderinterviews,respondedtothebusinesssurvey,orotherwiseofferedintelligenceandinsightstothestudy.

Note:Thisreportusesexperimentalmethodstodefine,scopeandmeasurethescale

oftheUK’sAIsector.Wethereforewelcomecommentsandfeedbackregardingthe

methodologyorfindingsherein,throughcontacting

digital-analysis-team@.uk

.

2DSIT(2022)CyberSecuritySectoralAnalysis2022,accessibleat[.uk/government/publications/cyber-security-sectoral-analysis-2022]

2.UKArtificialIntelligenceSectorProfile

TheNationalAIStrategydescribesArtificialIntelligence(AI)asthe“fastestgrowingdeeptechnologyintheworld,withhugepotentialtorewritetherulesofentireindustries,drivesubstantialeconomicgrowthandtransformallareasoflife”3.Recognisingchallenges,limitationsandquestionablevalueoftryingtotightlydefineAI,theAIregulationpolicypaper–Establishingapro-innovationapproachtoregulatingAI4–describesAIas“ageneral-purposetechnologylikeelectricity,theinternetandthecombustionengine.”ItdefinesthecorecharacteristicsofAIasthe‘a(chǎn)daptiveness’and‘a(chǎn)utonomy’ofthetechnologyi.e.,thatAItechnologycanoperateonthebasisofinstructionswhichhavebeenlearntratherthanprogrammed,andthatcanbeautonomouslyappliedwithindynamicandfast-movingenvironments.

2.1.DefiningtheUKArtificialIntelligenceSector

TheanalysescontainedinthisreportarebasedonacommerciallyorientedtaxonomyofAIactivityintheUK.The‘commerciallyoriented’distinctionismadegiventhecommercialnatureofthelanguageusedtoinformthisstudy(drawnfromwebandtrade-baseddescriptionsofcompanyactivity),vis-à-vismoretechnicalterminologythatiscurrentlybeingusedinparallelactivitytobetterunderstandresearch-relatedtechnologicalAIdevelopments.Asdiscussedfurtheroverleaf,thestudysegmentscompaniesaccordingtoanagreedtaxonomy,includingadelineationbetween‘dedicated’and‘diversified’AIcompanies.Table2.1providesanillustrationofsomeofthemostprominentdedicatedanddiversifiedAIcompaniesidentified.

Table2.1–KeyAISectorContributors–Dedicated&Diversified

Dedicated

Diversified

1DeepMind

1FacebookUK

2

LimeJump

2

IBMUK

3LoopMe

3Microsoft

4

Peak

4

GoogleUK

5Ivefi.ai

5Accenture

6

Lendable

6

Amazon

7Deloitte

7EquippedAI

8

Improbable

8

Vodafone

9Cognizant

9Exscientia

10

Tractable

10

BT

Source:Glass.ai,PerspectiveEconomics

3DSIT(2021)NationalAIStrategy,DepartmentforScienceInnovation&Technology.

4.uk/government/publications/establishing-a-pro-innovation-approach-to-regulating-ai/establishing-a-pro-innovation-approach-to-regulating-ai-policy-statement

ThetaxonomyusedtodescribeAIactivityinthisstudyisillustratedinFigure2.1.SalientpointstonoteregardingthetaxonomyarediscussedbelowFigure2.1,andthefulltaxonomyisalsoavailabletoviewintheappendicestothisreport.

Figure2.1–UKAITaxonomy

Source:PerspectiveEconomics

Foreaseofreference,salientpointsregardingthesectortaxonomyinclude:

?Pre-requisitesforinclusion:TobeincludedinthestudycompaniesmustberegisteredandhaveanactivepresenceintheUK.

?DedicatedvsDiversifiedAIcompanies:atthehighestlevel,thetaxonomysegmentsthebusinesspopulationaccordingtowhethertheyareadedicatedAIcompany,orwhetherAIactivitymakesupasmallerproportionofamuchbroadercommercialbusinessoffering.DedicatedAIcompaniesareconsideredtobebusinessesthatprovideaproprietaryAItechnicalservice,product,platformorhardwareastheirprimaryrevenuesource.

?AIBusinessModel:atalowerlevelthetaxonomysegmentsbetweencreatorsofAIinfrastructure5,developersofAIproducts6andAIserviceproviders7.AdoptersofAIproductsorservicesdevelopedbyothersareconsideredtobeoutsidethescopeofthisstudytoavoiddoublecountingandtohelpensurethattheanalysisispredominantlyfocussedonvalueaddedtotheUKeconomybyAIsectoractivity.

5Includinghardware,frameworks,software,librariesandplatforms.

6Companiesproducingbespoke,valueaddingAIsolutionsmarketedandsoldasproducts.

7CompaniesofferingskillsandexpertisetosupporttheadoptionofAIproducts.

?AICapabilities:theanalysescontainedinthereportsegmentAIsectoractivityaccordingtothemaintechnologicalcapabilitythatunderpinsbusinessmodels.WhilemanyofthecompaniesidentifiedemploymultipleAIcapabilities,languagemodelswereadjustedtoidentifyboththeforemostAIcapability,aswellasallothercapabilitiesmentioned.MachineLearningisagenerictermthatunderpinsallothercapabilities.Itisincludedasacategoryherebecauseinmanyinstancesdescriptivecompanyinformation(thebasisofclassification)doesnotfurtherspecifytechnicalcapabilities.

?Industries:tosupportcomparativeanalyseswithSICbasedeconomicdataeachcompanyisalsoassignedtoasingleindustrywhichisderivedfromandcanbemappedbacktoSICCodes.

Inaddition,eachin-scopecompanyhasbeenclassifiedintoindustrysectorsusingGlass.ai’sproprietarytopicontologies.ThemostprominentindustrysectorsreferredtoinSection3arelistedbelowandasummaryofcompaniesassignedtobothGlass.aisectorsandStandardIndustrialClassification(SIC)codesareavailableintheappendices.

?ComputerSoftware

?InformationTechnologyandServices

?Biotechnology,LifeSciences&Pharma

?FinancialServices

?ProfessionalServices

?WiderHealth&MedicalPractice

?R&DandScientific

?Automotive,IndustrialAutomation&Machinery

?Energy,Utilities&Renewables

?AgriculturalTechnology

2.2.NumberofUKAICompanies

BasedonacombinationofAIdrivenwebintelligence,andcollationofcompanydatafromnumerousopenandproprietarysourcesincludingCompaniesHouse,BureauvanDijk,BeauhurstandLightcast,weestimatethattherearecurrently3,170activecompaniesintheUKprovidingAIinfrastructures,productsandservices.Aspreviouslystated,thisfocussesspecificallyonvalue-addedbytheAIsectoranddoesnotthereforeincludethewidervalueaddedbyadoptionofAItechnologiesacrossothersectors.

2.2.1.RegisteredCompaniesbySize

Ninety-sixpercentofthecompanies

identifiedareSMEs;60%ofall

companiesaremicrobusinesses

(Figure2.2).

Consultationwithstrategic

stakeholdersfromacrossindustry,

academiaandpolicyspheres

pointedtothepresenceofa

significantnumberoflarge

technologyfirmsasakeystrengthof

theUK’sAIecosystem,deemedto

beatleastinpartduetotheUK’s

reputationforhighqualityscientific

researchandinnovation.This

assertionissupportedbya

comparisonofthesizeofcompaniesin

theAIsectorvis-à-visthebroaderUKbusinesspopulation8(Table2.1).ThetablebelowevidencesthattheAIsectorhasagreaterconcentrationoflarge,mediumandsmallbusinessesthanthegeneralUKBusinesspopulation.

Table2.1–AISizeProfileComparison

Size

UKBusiness

Population

Estimates(2022)

Percentage

AISectoral

Analysis

Percentage

Large(250+

employees)

7,675

<1%

132

4%

Medium(50-249)

35,940

3%

262

8%

Small(10-49)

217,240

15%

887

28%

Micro(1-9)

1,187,045

82%

1,889

60%

AllBusinesseswithatleast1employee

1,447,900

100%

3,170

100%

Source:ONS,Glass.ai

8UKBusinessPopulationEstimates(2022):Availableat:

.uk/government/statistics/business-population-

estimates-2022

2.2.2.Dedicated&DiversifiedAICompanies

Ofthe3,170activecompaniesFigure2.3–DedicatedandDiversifiedAICompanies

identifiedthroughthestudy60%are

dedicatedAIbusinessesand40%are

diversified(i.e.,haveAIactivityas

partofabroaderdiversifiedproduct

orserviceoffer,Figure2.3).

Incomparisontoothersimilarstudies

theproportionofdiversified

companieswithintheAIsectoris

higher.Thisisindicativeofthe

comparativelybroadscopeforAI

technologyapplicationsacross

sectors,andpointstoanintense

focusondevelopmentofAI

technologyamongbothdedicated

companies(e.g.,DeepMind,Source:Glass.ai,PerspectiveEconomics(n=3,170)

Improbable,BenevolentAI)and

established,diversifiedtechnologycompanieswithmuchbroaderserviceoffers(e.g.,Amazon,Google,Microsoft,IBM)9.

Figure2.4overleafshowsthatmostlargeAIcompaniesarediversified(89%,n=118),whereasthemajorityofmicro-AIcompaniesarededicated,meaningthatAIiscoretotheirbusinessmodel(68%,n=1,288).

9Itisworthnotingherethat,giventhebreadthandvaryingscaleofAIactivity,itisnotpossibletodelineatededicatedanddiversifiedAIfirmssolelyonthebasisoftheproportionofAIrelatedrevenueoremploymentwithincompanies.CompanieswithrelativelysmallAIteamscanbededicatedAIcompaniesandbythesametoken,companieswithlargeAIteamscanbediversified.Thereforeinstead,thestudyusedacombinationofdataonAIrelatedemploymentandadetailedmanualreviewofcompanydescriptionsasthebasisoffinaldecisionsonwhetherornotacompanyfallsintothededicatedordiversifiedcategory.

Figure2.4–AICompanySize

Source:Glass.ai,PerspectiveEconomics(n=3,170)

2.2.3.AICompanyRegistrations

AnalysisofincorporationdatesacrossthepopulationofAIcompaniesshowssignificantgrowthinAIcompanyregistrationssince2011.Onaverage,269newAIcompanieshavebeenregisteredeachyearsince2011,withapeakinnewcompanyregistrationsinthesameyearastheAISectorDeal(2018,n=429)andsmallernumbersofnewcompanyregistrationssince(Figure2.5overleaf)10.

10Analysisexcludes2022duetodatagapsassociatedwiththenormallaginavailabilityofcompanydata.

Figure2.5–AICompanyRegistrations

Source:PerspectiveEconomics,Glass.ai,CompaniesHouse(1998–2021|n=3,030

companiesincorporatedsince1998)

2.2.4.PredictedAIBusinessModel

ThetaxonomycanbeusedtobetterunderstandtheprofileoftheAIsectoraccordingtothebroadfocusofAIactivity(i.e.,infrastructure,productsorservices)andatalower-level,categorisationofthecorecapabilityofin-scopecompanies.Figure2.6overleafpresentsthetwomaintaxonomylevelsasanexcerptforeaseofreference.Analysesthatfollowfocusonthebusinessmodelsandcapabilitiesofcompaniesincludedinthefinaldataset.EachcompanyisassignedtoasinglebusinessmodelandcapabilitybasedonthehighestprobablecategorisationusingthelanguagemodelsdevelopedbyGlass.ai.

Figure2.6–AIBusinessModels&Capabilities

Source:Glass.ai,TaxonomyWorkshopOutputs

Acrosstheentirepopulation82%ofcompaniesfallwithinthebusinessmodelcategoriesofAIproductsandinfrastructures(72%and11%respectively),withtheremaining18%engagedpredominantlyinprovidingAI-relatedservices11.AgreaterproportionofdedicatedAIcompaniesprimarilyproduceAIrelatedproducts(75%ofdedicatedcompaniescomparedto66%ofdiversifiedcompanies).Together,thedataoncompanysizeandbusinessmodelsuggestthatdedicatedAIcompaniesarebothsmallerandmoredependentonthesuccessoftheAIproductsthe

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論