![數(shù)學(xué)物理方程綜述_第1頁](http://file4.renrendoc.com/view/76243f660425091f8006263925841c35/76243f660425091f8006263925841c351.gif)
![數(shù)學(xué)物理方程綜述_第2頁](http://file4.renrendoc.com/view/76243f660425091f8006263925841c35/76243f660425091f8006263925841c352.gif)
![數(shù)學(xué)物理方程綜述_第3頁](http://file4.renrendoc.com/view/76243f660425091f8006263925841c35/76243f660425091f8006263925841c353.gif)
![數(shù)學(xué)物理方程綜述_第4頁](http://file4.renrendoc.com/view/76243f660425091f8006263925841c35/76243f660425091f8006263925841c354.gif)
![數(shù)學(xué)物理方程綜述_第5頁](http://file4.renrendoc.com/view/76243f660425091f8006263925841c35/76243f660425091f8006263925841c355.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
數(shù)學(xué)物理方程綜述第1頁,共34頁,2023年,2月20日,星期五1.行波法:先求出滿足定解問題的通解,再根據(jù)定解條件確定其定解問題的解.行波法是通解法中的一種特殊情形,行波法又稱達(dá)朗貝爾(d’Alembert)解法.
它不僅可以求解無界區(qū)域的線性偏微分方程,而且能求解某些非線性偏微分方程.2.分離變量法:先求出滿足一定條件(如邊界條件)的特解族,然后再用線性組合的辦法組合成級數(shù)或含參數(shù)的積分,最后構(gòu)成適合定解條件的特解;第2頁,共34頁,2023年,2月20日,星期五
這是求解線性偏微分方程定解問題的最主要方法.從理論上說,分離變量法的依據(jù)是Sturm–Liouville型方程的本征值問題.從解題步驟上看,要求本征值問題所對應(yīng)的定解條件必須是齊次的(若為非齊次,則需先齊次化).從而使得這種解法對于定解問題中微分方程的具體形式有一定的限制,同時對所討論問題的空間區(qū)域形狀也有明顯限制.并且還涉及到正交曲面坐標(biāo)系的選?。?頁,共34頁,2023年,2月20日,星期五
在具體求解時,當(dāng)然還必須求解相應(yīng)的常微分方程的本征值問題.除了本書中介紹過的幾個本征值問題外,也可能會出現(xiàn)其他的特殊函數(shù).3冪級數(shù)解法:就是在某個任選點(diǎn)的鄰域上,把待求的解表示為系數(shù)待定的級數(shù),代入方程以逐個確定系數(shù).勒讓德多項(xiàng)式、貝塞爾函數(shù)即用冪級數(shù)解法求解得出.這種解法普遍,但計算量大,較為繁瑣.必要時可借助于計算機(jī)迭代計算.第4頁,共34頁,2023年,2月20日,星期五4格林函數(shù)法:這種方法具有極大的理論意義.它給出了定解問題的解和方程的非齊次項(xiàng)以及定解條件之間的關(guān)系,因而便于討論當(dāng)方程的非齊次項(xiàng)或定解條件發(fā)生變化時,解是如何相應(yīng)地發(fā)生變化的.Green函數(shù)法,已經(jīng)成為理論物理研究中的常用方法之一.5.積分變換方法:這種方法的優(yōu)點(diǎn)是減少方程自變量的數(shù)目.從原則上說,無論對于時間變量,還是空間變量;無論是無界空間,還是有界空間;都可以采用積分變換第5頁,共34頁,2023年,2月20日,星期五的方法求解線性偏微分方程的定解問題.但從實(shí)際計算上看,還需要根據(jù)方程和定解條件的類型,選擇最合適的積分變換.反演問題,是關(guān)系到擬采用的積分變換是否實(shí)際可行的關(guān)鍵問題.反演時涉及的積分很簡單,甚至有現(xiàn)成的結(jié)果(如查積分變換表,專用工具書等)可供引用,采用積分變換的確可以帶來極大的便利.但若涉及的積分比較復(fù)雜,而且沒有現(xiàn)成的積分變換結(jié)果可供引用,那么反演問題就成為了積分變換的難點(diǎn).第6頁,共34頁,2023年,2月20日,星期五
積分變換法和分離變量法存在密切的聯(lián)系.例如,當(dāng)本征值過渡到連續(xù)譜時,分離變量法就變?yōu)橄鄳?yīng)的積分變換法.
另外,從實(shí)用的角度來看,如果空間是有界的,一般說來,積分變換和分離變量法沒有什么差別,故仍不妨采用分離變量法.積分變換方法也具有分離變量法所沒有的優(yōu)點(diǎn):它還可以應(yīng)用于求解某些非線性偏微分方程.第7頁,共34頁,2023年,2月20日,星期五6.保角變換法.這種方法的理論基礎(chǔ)是解析函數(shù)所代表的變換具有保角性.這種解法主要用于二維Laplace方程或Poisson方程的邊值問題,因?yàn)樵诒=亲儞Q下,前者的形式不變,后者也只是非齊次項(xiàng)作相應(yīng)的改變.粗略地說,運(yùn)用保角變換,可以把“不規(guī)則”的邊界形狀化為規(guī)則的邊界形狀.例如,可以把多邊形化為上半平面或單位圓內(nèi).再結(jié)合上半平面或圓內(nèi)的Poisson公式,就能直接求出二維Laplace方程的解.第8頁,共34頁,2023年,2月20日,星期五
運(yùn)用保角變換,可以解決一些典型的物理問題或工程問題.例如,有限大小的平行板電容器的邊緣效應(yīng)問題,空氣動力學(xué)中的機(jī)翼問題,以及其他一些流體力學(xué)問題.又如,應(yīng)用保角變換法,可以把偏心圓化為同心圓.7.變分法.這個方法具有理論價值和實(shí)用價值.在理論上,它可以把不同類型的偏微分方程的定解問題用相同的泛函語言表達(dá)出來(當(dāng)然不同問題中出現(xiàn)的泛函是不同的),或者說,把第9頁,共34頁,2023年,2月20日,星期五不同的物理問題用相同的泛函語言表達(dá)出來.正是由于這個原因,變分或泛函語言已經(jīng)成為表述物理規(guī)律的常用工具之一.在實(shí)用上,變分法又提供了一種近似計算的好辦法.有效地利用物理知識,靈活巧妙地選取試探函數(shù),可以使計算大為簡化.在物理學(xué)中,無論過去或現(xiàn)在,變分法都是常用的一種近似計算方法.例如,在原子和分子光譜的計算中就廣泛地采用了變分法.第10頁,共34頁,2023年,2月20日,星期五8.計算機(jī)仿真解法:利用數(shù)學(xué)工具軟件(Matlab,Mathematic,Mathcad)和常用計算機(jī)語言(VisualC++)等實(shí)現(xiàn)對數(shù)學(xué)物理方程的求解,參考計算機(jī)仿真部分對三類典型的數(shù)學(xué)物理方程的求解及其解的動態(tài)演示.9.數(shù)值計算法:對于邊界條件復(fù)雜,幾何形狀不規(guī)則的數(shù)學(xué)物理定解問題,精確求解很困難,甚至不可能的情形,擬采用數(shù)值求解的方法.其中主要的數(shù)值解法包括:有限差分法、蒙特-卡洛(Monte-Carlo)法等.第11頁,共34頁,2023年,2月20日,星期五18.2非線性偏微分方程
前面我們討論了線性偏微分方程定解問題的解法,而現(xiàn)實(shí)中的許多物理現(xiàn)象都是非線性地依賴于一些物理參量變化的,從而描述這些現(xiàn)象的數(shù)學(xué)物理方程就是非線性偏微分方程.
非線性偏微分方程有許多不同于線性偏微分方程的特征,比如線性偏微分方程的疊加原理對非線性偏微分方程就不再成立,從而基于疊加原理的求解方法對非線性偏微分方程就不再適用.另外,解的性質(zhì)也有許多本質(zhì)的變化.第12頁,共34頁,2023年,2月20日,星期五
自20世紀(jì)60年代以來,非線性方程在物理、化學(xué)、生物等各個學(xué)科領(lǐng)域中不斷出現(xiàn),其研究內(nèi)容日趨豐富.與線性方程的定解問題一樣,非線性方程同樣存在定解問題的適定性,但后者要復(fù)雜得多.限于篇幅,我們主要介紹物理現(xiàn)象中典型的非線性方程及其求解方法,它們在非線性光學(xué)、量子場論和現(xiàn)代通信技術(shù)等領(lǐng)域具有廣泛的應(yīng)用前景.典型非線性方程及其行波解第13頁,共34頁,2023年,2月20日,星期五在無限空間,線性或非線性偏微分方程(18.2.1)其中為包括時間和空間偏導(dǎo)數(shù)的微分算子。形如
的解,稱為上式的行波解,其中為常數(shù).對線性偏微分方程,比如波動方程,則為滿足一定條件的任意函數(shù).但對第14頁,共34頁,2023年,2月20日,星期五非線性偏微分方程,由于疊加原理已不成立,只能取特定的形式才有可能滿足(18.2.1).事實(shí)上,滿足式(18.2.1)的特定形式
是方程的非線性本征模式.由行波解可以分析非線性偏微分方程解的重要性質(zhì).我們特別感興趣的是非線性偏微分方程的所謂“孤立波”形式的解.
18.2.1孤立波
1834年,英國科學(xué)家S.Russel沿河邊騎馬時發(fā)現(xiàn)一個有趣的現(xiàn)象[14],由于船的推動,河中涌起一個孤立的波,以幾乎不變的速第15頁,共34頁,2023年,2月20日,星期五度和不變的波形向前推進(jìn)(如圖18.1所示),很久以后才遇障礙而消失.Russel后來發(fā)表了觀察報告,首先提出“孤立波”的名詞概念
.1895年,荷蘭數(shù)學(xué)家(D.J.Korteweg)和他的學(xué)生(G.deVries)在研究淺水波時,導(dǎo)出了如下形式的方程
(18.2.1)其中是常數(shù),該方程以兩位科學(xué)家命名而稱為KdV方程.由于方程左邊第二項(xiàng)關(guān)于是非線性的,所以(18.2.1)是一非第16頁,共34頁,2023年,2月20日,星期五線性偏微分方程.現(xiàn)在來尋求方程(18.2.1)的平面前進(jìn)波(簡稱行波)解,令
(18.2.2)其中是常數(shù),將(18.2.2)式代入(18.2.1),得對積分一次得第17頁,共34頁,2023年,2月20日,星期五(為任意常數(shù))(18.2.3)用乘(18.2.3)式兩邊,并對積分,得
(18.2.4)其中為任意常數(shù).由于孤立波是一個局部波,當(dāng)
及其各階導(dǎo)數(shù)都趨于零.于是,由(18.2.3),(18.2.4)式知,時,有,從而(18.2.4)式變成第18頁,共34頁,2023年,2月20日,星期五
(18.2.5)從方程(18.2.5)可看出,只有當(dāng)時,KdV方程才可能有實(shí)的行波解.當(dāng)時,,可知當(dāng)由變到時,由零上升到極大值,然后又下降到零,其圖形大致形如圖18.1所示,這種形狀的波稱為孤立波.下面我們來求的具體表達(dá)式,為此把方程(18.2.5)寫成變量第19頁,共34頁,2023年,2月20日,星期五分離的形式
(18.2.6)查積分表,可解得
(18.2.7)其中A為積分常數(shù).不妨設(shè)A=0(否則對作平移),則(18.2.7)第20頁,共34頁,2023年,2月20日,星期五可化簡為
(18.2.8)這個函數(shù)的圖形如圖18.1所示,它表示KdV方程(18.2.1)有任意波速c的孤立波解,其峰高為.由(18.2.8)式及圖18.1可得出結(jié)論第21頁,共34頁,2023年,2月20日,星期五(1)波峰高與波速成正比;(2)由(18.2.7)式知,當(dāng)固定時,相應(yīng)的
的絕對值與近似地成反比.因此,速率大的孤立波,其波寬反而小.
是鐘形的正割雙曲函數(shù),其圖形與淺水槽中觀察到的孤立波的形狀相同.上述KdV方程的行波解(18.2.8)稱為孤立波解,從而在數(shù)學(xué)上證實(shí)了孤立波的存在.20世紀(jì)70年代兩位美國科學(xué)家第22頁,共34頁,2023年,2月20日,星期五(Zabusky和Kruskal)用數(shù)值模擬證實(shí)了:兩個相對運(yùn)動的孤立波在碰撞之后仍為兩個穩(wěn)定的,形狀與碰撞前相同的孤立波,僅僅相位發(fā)生了變化,也就是說兩個孤立波的碰撞類似于粒子之間的碰撞.這種孤立波具有類似粒子的性能,因而這兩位科學(xué)家將孤立波命名為“孤立子”(Solition).
20世紀(jì)中,人們不僅在淺水波中發(fā)現(xiàn)孤立波,在光纖通信,金屬相變,神經(jīng)傳播等許多領(lǐng)域中都有”孤立波”現(xiàn)象,即某種現(xiàn)象或信息脈沖以幾乎恒定的形態(tài)進(jìn)行傳播.第23頁,共34頁,2023年,2月20日,星期五
非線性偏微分方程存在孤立波解,除KdV方程之外,還有很多,如1)非線性薛定諤方程(18.2.9)2)正弦——戈登方程(18.2.10)第24頁,共34頁,2023年,2月20日,星期五
此外,還有Klein-Gordon方程,Toda非線性晶格方程等,這些非線性偏微分方程在等離子體物理、非線性光學(xué)、量子場論和通信技術(shù)等領(lǐng)域都有著重要的地位和作用.18.2.2沖擊波本節(jié)研究另一類非線性偏微分方程(18.2.11)第25頁,共34頁,2023年,2月20日,星期五式(18.2.11)稱為Burgers方程.其中Burgers方程
為常數(shù),是非線性耗散方程.
下面我們以之為例來分析其沖擊波解.我們不妨設(shè)上式有行波解,并具有下列形式(18.2.12)將其代入Burgers方程得到(18.2.13)第26頁,共34頁,2023年,2月20日,星期五對積分得到(18.2.14)其中為積分常數(shù).上式改寫成(18.2.15)設(shè)方程右邊有兩個實(shí)根(18.2.16)第27頁,共34頁,2023年,2月20日,星期五由于和都是待定常數(shù),取
于是式(18.2.15)為(18.2.17)上式積分可得到(18.2.18)第28頁,共34頁,2023年,2月20日,星期五其中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年果蔬飲品品牌授權(quán)與采購合作協(xié)議
- 中國偏轉(zhuǎn)線圈行業(yè)市場深度分析及行業(yè)發(fā)展趨勢報告
- 智慧畜牧設(shè)備新建項(xiàng)目可行性研究報告建議書申請格式范文
- 2025年中國白乳膠行業(yè)競爭格局分析及投資戰(zhàn)略咨詢報告
- 2025年度新型城鎮(zhèn)化混凝土工程勞務(wù)分包合同模板
- 2025年中國碳碳復(fù)合材料行業(yè)市場發(fā)展現(xiàn)狀及投資規(guī)劃建議報告
- 2025年度建筑工程勞務(wù)大清包施工合同環(huán)境保護(hù)承諾書
- 酸奶味行業(yè)行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究分析報告
- 農(nóng)村困難戶申請書
- 2025年苯氧威原藥行業(yè)深度研究分析報告
- 早點(diǎn)出租承包合同(2篇)
- 2025年上半年工業(yè)和信息化部裝備工業(yè)發(fā)展中心應(yīng)屆畢業(yè)生招聘(第二批)易考易錯模擬試題(共500題)試卷后附參考答案
- 內(nèi)鏡室院感知識培訓(xùn)課件
- 2025年市場拓展工作計劃
- 2025年八省聯(lián)考云南高考生物試卷真題答案詳解(精校打印)
- 2020-2024年五年高考?xì)v史真題分類匯編(山東)專題15 中國古代史(原卷版)
- (房屋建筑部分)工程建設(shè)標(biāo)準(zhǔn)強(qiáng)制性條文版
- 《大學(xué)英語四級詞匯大全》
- 倉庫管理培訓(xùn)課件
- 第六章-1八綱辨證
- 《中國古典建筑》課件
評論
0/150
提交評論