版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
附錄ADesignofaHighPrecisionTemperatureMeasurementSystem1IntroductionSensorsareoneofthemostimportantelementsusedinmanyinstrumentationcircuits.Theyareusedinmanyindustrialapplicationsandtakeacertainformofinput(temperature,pressure,altitude,etc.)andconvertitintoreadingsthatcanbeinterpreted.Manytypesofsensorsarenonlinearinnaturefromwhichalinearoutputisdesired.Therearemanydifferentsensorsfortemperaturemeasurementandthermocouplesarethemostcommonlyused.Theyarepreferredinindustrialapplicationsduetotheirlowcost,wideoperationrange,fastresponsetimeandaccuratewhentheirpeculiaritiesareunderstood.Thermocoupleshavealsooutputsnonlinearlyrelatedtotemperature.Therefore,sensormodelingandlinearizationtechniquesarenecessary.Tosolvethelinearizationproblemofasensor,therearegenerallytwomethodsproposed.Thefirstonerequiresnonlinearanalogcircuitandthesecondusesnumericalmethodsthatarecomputedbymicroprocessororcomputer.Analogcircuitsarefrequentlyusedforimprovingthelinearityofthesensorcharacteristics,whichimpliesadditionalanaloghardwareandtypicalproblemsassociatedtoanalogcircuitssuchastemperaturedrift,gainandoffseterror.Usingthesecondmethod,sensornonlinearitiescanbecompensatedbymeansofarithmeticoperations,ifanaccuratesensormodelisavailable(directcomputationofthepolynomials),oruseofamultidimensionallook-uptable.Directcomputationofthepolynomialmethodismoreaccuratebuttakesalongtimeforcomputation,whilethelook-uptablemethod,thoughfaster,isnotveryaccurate.Inrecentyears,applicationofANNshasemergedasapromisingareaofresearchinthefieldofinstrumentationandmeasurement.Itprovidesaneurocomputingapproachforsolvingcomplexproblemsespeciallyinnonlinearsystemmodelingwhichthenetworkitselfisanonlinearsystem.Thisisextremelyusefulwhentheareaofinterestisabsolutelynonlinearincludingtheexperimentaldatathatisusedfortraining.OneofthemostpowerfulusesofANNsisinfunctionapproximation(curvefitting).InterpolationbasedonANNprovideslowerinterpolationerrorswhencomparedwithconventionalnumericalinterpolation.Intheworkwepresenthere,highprecisiontemperaturemeasurementsystembasedonANNapproachisproposed.ThecalibratingdataisobtainedbyWavetek9100calibrationunitthatisnecessaryforthetrainingandthetestingphasesoftheANN.ThehardwareandsoftwarepartsofthesystemareintegratedinaVIusedforsystemoperationandcalibration.TheANNismatchedtothecalibratingdatabyprovidingadesiredfinalerror.ThemeansquareerrorbetweencalibrationandtheANNmodeleddataisminimizedintermsofthestructure,numberoflayers,andnumberofneuronsbythedevelopedsoftware.2SystemHardwareAthermocouplegeneratesavoltageproportionaltothemeasurementjunctiontemperatureatmVlevelswhilethecoldjunctiontemperatureisconstant.Inordertomakeanaccuratemeasurementthecoldjunctiontemperaturemustbeknown.Figure1(a)showstheblockdiagramofthetemperaturemeasurementsystemdesignedviaanANNintheoperationphase.Itconsistsofathermocouple(typeE)exposedtoadesiredtemperature,includingsignalconditioningcircuitwith16-bitanalogtodigitalconverter(ADC)andInput/Outputinterfacecardinterfacingwithacomputer.Thedesignedsignalconditioningcircuithasaprogrammablegaininstrumentationamplifier(PGA204BP)withthegainof1,10,100and1000,a16-bitADC(AD976A),anAD595monolithicthermocoupleamplifierwithcoldjunctioncompensationwhichisconfiguredasastand-aloneCelsiusthermometeranda4channelanalogmultiplexer(ADG529A)whichselectthethermocoupleoroutputofCelsiusthermometer.TheAD976Aisahighspeed,lowpower16-bitA/Dconverterthatoperatesfromasingle5Vsupply.Thispartcontainsasuccessiveapproximation,switchedcapacitorADC,aninternal2.5Vreferenceandahighspeedparallelinterface.AccuracyofthesystemdependsdirectlyonstepsizeofADC.Witha±10Vinputs,oneLSBofAD976Ais305μV.WhenAD595isusedasaCelsiusthermometer,thethermocoupleisomitted,andthedifferentialinputsareshuntedtogethertocommon.Inthismode,AD595generateavoltagewithascalefactorof10mV/°Canditsoutputisusedforcoldjunctiontemperaturedatathatthewrittensoftwareisused.SomeimportantcharacteristicsoftheAD595are:operationtemperaturerange-55to125°C;stabilityvs.temperature:±0.05°C/°Candsensitivity:10mV/°C.OutputsignalofPGA204BPisdigitizedbyAD976AwhichitsoutputisconnectedtotheI/Ointerfacecardandtransferredtoapersonalcomputerwheredatareductionandoptimizationareimplemented.Fig.1.Measurementsystemblockdiagram:(a)operationalphase,(b)calibrationphaseToestablishtheANNsweightsandbiases,duringthecalibratingphase(ANNtrainingphase),Wavetek9100calibrationunit,withtheaccuracyof±0.006%+4.16μVintherangeof000.000mVto320.000mV,isconnectedtotheterminalsofanalogmultiplexertogeneratetabledthermocouplevoltagesasshowninFigure1(b).ThisvoltageisusedastheinputoftheANN,andthermocoupletemperaturewithoutcoldjunctioncompensationistheoutputoftheANN.Intheoperationphase(Figure1(a)),inordertomakethecoldjunctioncompensation,datatakenfromCelsiusthermometeroutputisused.TheoutputvalueofANNisshiftedbytheenvironmenttemperaturethatisobtainedbyCelsiusthermometer.ThenthisvalueisdisplayedontheVIasthethermocoupletemperature.ThedevelopedVIisusedtoacquirethedataforANNtrainingphaseandtoshowthecalculatedtemperatureintheoperationphase.Figure2showsthefrontpaneloftheVI.Themainfeaturesassociatedwiththisinstrumentare:displayofthemeasuredtemperatureandcorrespondingoutputvoltagefromconditioningcircuitforcollectingthedatainthecalibratingphaseandactualtemperaturewithcoldjunctioncompensationintheoperationphase.Thesystemiscontrolledbythesoftwarewritteninbothoperationandcalibrationphases.3ArtificialNeuralNetworkANNsarebasedonthemechanismofthebiologicallyinspiredbrainmodel.ANNsarefeed-forwardnetworksanduniversalapproximators.Theyaretrainedandlearnedthroughexperiencenotfromprogramming.Theyareformedbyinterconnectionsofsimpleprocessingelements,orneuronswithadjustableweights,whichconstitutetheneuralstructureandareorganizedinlayers.Eachartificialneuronhasweightedinputs,summationandactivationfunctionsandoutput.ThebehaviouroftheoverallANNdependsupontheoperationsmentionedontheartificialneurons,thelearningruleandthearchitectureofthenetwork.Duringthetraining(learning),theweightsbetweentheneuronsareadjustedaccordingtosomecriterion(Themeansquareerrorbetweenthetargetoutputandthemeasuredvalueforallthetrainingsetfallsbelowapredeterminedthreshold)orthemaximumallowablenumberofepochsisreached.Althoughthetrainingisatimeconsumingprocess,itcanbedonebeforehand,offline.Thetrainedneuralnetworkisthentestedusingdatawaspreviouslyunseenduringtraining.MLPsarethesimplestandmostcommonlyusedneuralnetworkarchitectures.Theyconsistsofinput,outputandoneormorehiddenlayerswithapredefinednumberofneurons.Theneuronsintheinputlayeronlyactasbuffersfordistributingtheinputsignalsxitoneuronsinthehiddenlayer.Eachneuronjinthehiddenlayersumsupitsinputsignalsxi,afterweightingthemwiththestrengthsoftherespectiveconnectionswjifromtheinputlayerandcomputesitsoutputyjasafunctionfofthesum,namelywherefisoneoftheactivationfunctionsusedinANNarchitecture.Traininganeuralnetworkconsistsofadjustingthenetworkweightsusingdifferentlearningalgorithms.Alearningalgorithmgiveswji(t)intheweightofaconnectionbetweenneuronsiandjattimet.Theweightsarethenupdatedaccordingtothefollowingformula:Therearemanyavailablelearningalgorithmsintheliterature.ThealgorithmsusedtotrainANNsinthisstudyareLevenberg–Marquardt(LM),Broyden–Fletcher–Goldfarb–Shanno(BFGS),BayesianRegularization(BR),ConjugategradientbackpropagationwithFletcher-Reevesupdates(CGF),andResilientback-propagation(RP)algorithms.NeuralLinearizationInthispaper,themultilayeredperceptron(MLP)neuralnetworkarchitectureisusedasaneurallinearizer.TheproposedtechniqueinvolvesanANNtoevaluatethethermocoupletemperature(ANNoutput)whenthermocoupleoutputvoltageisgivenasinput.TrainingtheANNwiththeuseofmentionedlearningalgorithmtocalculatethetemperatureinvolvespresentingitwithdifferentsetsofinputvaluesandcorrespondingmeasuredvalues.DifferencesbetweenthetargetoutputandtheactualoutputoftheANNareevaluatedbythelearningalgorithmtoadapttheweightsusingequations(1)and(2).Theexperimentaldatatakenfromthermocoupledatasheetsareusedinthisinvestigation.Thesedatasheetsarepreparedforaparticularjunctiontemperature(usually0°C).TheANNistrainedwith80thermocoupletemperaturesthatisuniformlydistributedbetween-200and1000°Cwhichisobtainedinthecalibrationphase.Howevertheperformanceofthefinalnetworkwiththetrainingsetisnotanunbiasedestimateofitsperformanceontheuniverseofpossibleinputs,andanindependenttestsetisrequiredtoevaluatethenetworkperformanceaftertraining.Therefore,theotherdatasetof20thermocoupletemperaturesthatisuniformlydistributedbetween-200and1000°C,isusedinthetestprocess.Theinputandoutputdatatuplesarenormalizedbetween-1.0and1.0beforetraining.Afterseveraltrialswithdifferentlearningalgorithmsandwithdifferentnetworkconfigurations,itisfoundthatthemostsuitablenetworkconfigurationis1X7X3X1withtheLMalgorithm.Thismeansthatthenumberofneuronsis7forthefirsthiddenlayerand3forthesecondhiddenlayerrespectively.Theinputandoutputlayershavethelinearactivationfunctionandthehiddenlayershavethehyperbolictangentsigmoidactivationfunction.Thenumberofepochis1000fortraining.Itisimportanttonotethatthecriteriafortoosmallandtoobighiddenlayerneuronnumbersdependonalargenumberoffactors,likeANNtype,trainingsetcharacteristicsandtypeofapplication.Thistopicisstillunderspecialattentionofartificialintelligenceresearcherstoday.4ResultsandConclusionThedevelopedANNmodelsaretrainedandtestedwiththeuseofdifferentlearningalgorithmscalledLM,BR,CGF,RPandBFGStoobtainbetterperformanceandfasterconvergencewithsimplerstructure.Table1showstheerrorsfromthecompletelearningalgorithmsusedintheanalysisforthesamenetworkconfigurationmentionedabove.Whentheperformancesoftheneuralmodelsarecomparedwitheachother,thebestresultforthetrainingandthetestareobtainedfromthemodeltrainedwiththeLMalgorithm.Thetrainingandtesterrors(MSE,meansquareerror)ofthenetworkfortheLMalgorithmare0.7x10-9and1.3x10-4respectively.AsitisclearlyseenfromTable1,thenextsolutionwhichisclosertoLMisobtainedfromBRalgorithm.Amongneuralmodelspresentedhere,theworstresultsareobtainedfromtheRPmethodforthisparticularapplication.Itshouldbeemphasizedthattheaccuracyoflearningalgorithmsingeneraldependsonselectingappropriatelearningparameters,networkconfigurationsandinitializations.Figure3representsthepercentagetesterrorofthenetworktrainedwithLMfortypeEthermocouple.AsitisclearlyseenfromFigure3,themaximumpercentageerrorbecomeslowerthan0.3%.Theaveragepercentageerrorisgreaterthan0.1%fortemperaturesbetween-200and200°C,thereasonbeingthatinthisrangethethermocouplesarestronglynonlinear.However,itisobviousforbestfitintherange-200to200°Cthatthenumberoftrainingdatasetmustbeincreased.Thenormalizederrorconvergencecurvesinthelearningalgorithmsusedintheanalysisfor1000Fig.4.Learning(convergence)characteristicsoftheANNfordifferentlearningalgorithmsusedintheanalysisfor1000epoch.epochsaregraphicallyshowninFigure4.Forsimulatingtheneuralmodel,theANNistrained,tominimizetheMSE.Asthelearningproceeds,themeansquareerrorprogressivelydecreasesandfinallyattainsasteadystateminimumvalueasshowninFigure4.Asaconclusion,atechniqueforhighprecisiontemperaturemeasurementbasedonanANNmodelisproposedinthispaper.ThetrainingprocessforMLPANNsisperformedsuccessfullyinthisstudywiththeuseofLMalgorithmwhichgivesthebestresultamongotherlearningalgorithms.GainandoffseterrorsofthesignalconditioningcircuitareautomaticallycancelledasaconsequenceoftheusageoftheANNtechnique.Theproposedmethodhasalargeareaofapplicationsinallsensorbasedmeasurementsystemswherethesensornonlinearityisthemainfactortobeconsidered.Thetechniquehasapotentialfutureinthefieldofinstrumentationandmeasurement.附錄B高精度溫度測(cè)量裝置的設(shè)計(jì)1引言傳感器是許多設(shè)備電路中最重要的元素之一。許多工業(yè)都應(yīng)用傳感器,傳感器采用某一形勢(shì)的輸入(例如溫度、壓力、幅度等),并轉(zhuǎn)換成能夠解釋的儀器指示數(shù)。在本質(zhì)上許多傳感器都是非線性的,但輸出卻要求是線性的。有許多種傳感器可以進(jìn)行溫度的測(cè)量,其中熱電偶的應(yīng)用最廣泛。由于熱電偶具有低成本、寬操作范圍、響應(yīng)迅速、精確度高的優(yōu)點(diǎn),更適合工業(yè)應(yīng)用。對(duì)于溫度,熱電偶也具有非線性輸出。因此,傳感器的仿真和線性化技術(shù)非常必要。為了解決傳感器的線性化問(wèn)題,提出了兩種方法。第一種方法需要非線性的模擬電路,第二種方法應(yīng)用能夠用微處理器或計(jì)算機(jī)計(jì)算的數(shù)值方法。模擬電路經(jīng)常被用來(lái)提高傳感器的線性特性,但模擬電路需要額外的模擬硬件,還具有對(duì)于模擬電路的典型問(wèn)題,如溫度漂移,增益和補(bǔ)償誤差。應(yīng)用第二種方法,如果一個(gè)精確的傳感器是可用的(通過(guò)多項(xiàng)式直接計(jì)算),或應(yīng)用查詢(xún)多維的表格,傳感器的非線性能夠通過(guò)操作算法得到補(bǔ)償。多項(xiàng)式方法的直接計(jì)算更加精確但需要較長(zhǎng)的計(jì)算時(shí)間,而查表的方法盡管快但并不十分精確。最近幾年,在使用儀器和測(cè)量的領(lǐng)域,人工神經(jīng)網(wǎng)絡(luò)作為一種有前景的研究領(lǐng)域已經(jīng)興起。人工神經(jīng)網(wǎng)絡(luò)對(duì)于解決復(fù)雜問(wèn)題特別是非線性系統(tǒng)的仿真提供了神經(jīng)計(jì)算方法,而網(wǎng)絡(luò)本身卻是一個(gè)非線性系統(tǒng)。當(dāng)測(cè)量系統(tǒng)是非線性時(shí)包括用來(lái)訓(xùn)練的試驗(yàn)數(shù)據(jù)也是非線性時(shí),人工神經(jīng)網(wǎng)絡(luò)是非常有用的。人工神經(jīng)網(wǎng)絡(luò)的最廣泛應(yīng)用是數(shù)值逼近(曲線擬和)。與傳統(tǒng)的數(shù)值插補(bǔ)比較,基于人工神經(jīng)網(wǎng)絡(luò)的插補(bǔ)提供低的插補(bǔ)誤差。在本文中,我們提出了基于人工神經(jīng)網(wǎng)絡(luò)方法的高精度溫度測(cè)量系統(tǒng)。校正數(shù)據(jù)是通過(guò)在人工神經(jīng)網(wǎng)絡(luò)的訓(xùn)練和測(cè)試階段必須具有的調(diào)幅調(diào)頻信號(hào)源9100校正單元獲得的。系統(tǒng)的硬件和軟件部分被綜合在用于系統(tǒng)測(cè)量和校正的虛擬設(shè)備上。人工神經(jīng)網(wǎng)絡(luò)通過(guò)提供一個(gè)理想的最終誤差來(lái)校正數(shù)據(jù)。這就是按照神經(jīng)元的結(jié)構(gòu)和層數(shù)和神經(jīng)元的數(shù)量通過(guò)軟件,將校正和人工神經(jīng)網(wǎng)絡(luò)仿真數(shù)據(jù)之間的均方誤差最小化。系統(tǒng)硬件熱電偶產(chǎn)生一和測(cè)量溫度點(diǎn)成比例的在mV數(shù)量級(jí)的電壓值,,而在零點(diǎn)的溫度值是一個(gè)常數(shù)。為了精確的測(cè)量,我們必須知道零點(diǎn)的溫度值。通過(guò)人工神經(jīng)網(wǎng)絡(luò)的操作階段,圖1(a)顯示了溫度測(cè)量系統(tǒng)模塊。它組成了放置在理想溫度條件下的熱電偶(E型號(hào)),包括帶有16位的模擬數(shù)字轉(zhuǎn)換器和接入到計(jì)算機(jī)的輸入輸接口卡的信號(hào)調(diào)節(jié)電路,設(shè)計(jì)的信號(hào)調(diào)節(jié)電路具有可設(shè)計(jì)增益的放(PGA204BP),它的增益是1,10,100,1000倍,16位的A/D轉(zhuǎn)換器(AD976A),帶有零點(diǎn)溫度補(bǔ)償?shù)腁D595單片電路熱電偶放大器,并把它作為攝氏溫度計(jì)的標(biāo)準(zhǔn),用來(lái)選擇熱電偶和攝氏溫度計(jì)的輸出的4路模擬多路器(ADG529A)。AD976A具有高速度、低功耗、16位A/D轉(zhuǎn)換器的特點(diǎn),采用5V工作電壓。這一部分提供連續(xù)的逼近,轉(zhuǎn)換電容ADC,間隔的2.5V干擾和一高速度的平行界面。系統(tǒng)的精度直接依靠ADC每步的大小。具有的輸入,AD976A的LSB是。當(dāng)AD595作為攝氏溫度應(yīng)用時(shí),熱電偶被忽略,微分的輸入被匯集到一起。在這種模式中,AD595產(chǎn)生一個(gè)比例因子為10mV/°C,它的輸出應(yīng)用在編寫(xiě)軟件的零點(diǎn)溫度數(shù)據(jù)中。AD595的一些重要特性如下:電壓范圍是-55°C;到125°C;相對(duì)于溫度的穩(wěn)定性是±0.05°C/°C;相對(duì)于溫度的敏感性是:10mV/°C。PGA204BP的輸出信號(hào)通過(guò)AD976A被數(shù)化;AD976A的輸出連接到I/O接口卡并傳遞到個(gè)人計(jì)算機(jī)上,執(zhí)行數(shù)據(jù)的削減和優(yōu)化。為了設(shè)定人工神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)權(quán)值和閾值,在校正階段(人工神經(jīng)網(wǎng)絡(luò)的訓(xùn)練階段),在000.000mV到320.000mV的范圍內(nèi),精確度為±0.006%+4.16μA的調(diào)幅調(diào)頻信號(hào)源9100校正單元,連接到模擬多路器的終端,用來(lái)產(chǎn)生如圖1(b)所示的熱電偶電壓。此電壓作為人工神經(jīng)網(wǎng)絡(luò)的輸入值,沒(méi)有零點(diǎn)溫度補(bǔ)償?shù)臒犭娕茧妷菏侨斯ど窠?jīng)網(wǎng)絡(luò)的輸出值。在操作階段(如圖1a),為了實(shí)現(xiàn)零點(diǎn)溫度補(bǔ)償,我們使用了從攝氏溫度計(jì)輸出的數(shù)據(jù)值。人工神經(jīng)網(wǎng)絡(luò)的輸出值隨著由攝氏溫度計(jì)獲得的環(huán)境溫度值的變化而變化。然后這個(gè)值顯示在虛擬機(jī)上作為熱電偶的溫度值。虛擬機(jī)被用來(lái)獲得人工神經(jīng)網(wǎng)絡(luò)的訓(xùn)練過(guò)程中的數(shù)據(jù)和顯示操作階段的計(jì)算溫度值。圖2顯示了虛擬機(jī)的前端電路板。此設(shè)備的主要特征是:顯示測(cè)量的溫度值和從調(diào)理電路輸出的相應(yīng)電壓值,調(diào)理電路是用來(lái)收集在校正階段的數(shù)據(jù)值和在操作階段具有零點(diǎn)溫度補(bǔ)償?shù)膶?shí)際電壓值。此系統(tǒng)是由校正和操作階段編寫(xiě)的軟件來(lái)控制的。3人工神經(jīng)網(wǎng)絡(luò)人工神經(jīng)網(wǎng)絡(luò)是基于生物機(jī)理的人腦的模擬。人工神經(jīng)網(wǎng)絡(luò)是前向反饋網(wǎng)絡(luò)和全局逼近網(wǎng)絡(luò)。它是通過(guò)經(jīng)驗(yàn)而不是程序來(lái)訓(xùn)練和學(xué)習(xí)的。它們是通過(guò)簡(jiǎn)單的進(jìn)程元素相互連接而形成的,或是可調(diào)節(jié)的閾值相互連接而形成的,閾值組成神經(jīng)的結(jié)構(gòu)組成層。每一個(gè)人工神經(jīng)都有閾值輸入,求和單元、功能函數(shù)和輸出。整個(gè)人工神經(jīng)網(wǎng)絡(luò)的特性依靠所提及的人工神經(jīng)元、學(xué)習(xí)算法和網(wǎng)絡(luò)的構(gòu)造。在訓(xùn)練的過(guò)程中,神經(jīng)元之間的閾值可以通過(guò)一些標(biāo)準(zhǔn)(對(duì)于所有的訓(xùn)練集目標(biāo)輸出值和測(cè)量值之間的均方誤差達(dá)到預(yù)先設(shè)定好的極限值)進(jìn)行調(diào)整,或達(dá)到最大的允許步數(shù)。雖然訓(xùn)練過(guò)程非常耗費(fèi)時(shí)間,但這能提前完成,并能脫機(jī)運(yùn)行。訓(xùn)練完的神經(jīng)網(wǎng)絡(luò)用來(lái)測(cè)試數(shù)據(jù)但這一過(guò)程是看不見(jiàn)的。機(jī)器語(yǔ)言程序是構(gòu)建神經(jīng)網(wǎng)絡(luò)中最簡(jiǎn)單的和應(yīng)用最廣泛的。機(jī)器語(yǔ)言程序由輸入、輸出、事先定義好神經(jīng)元的數(shù)量的一層或多個(gè)隱層。輸入層的神經(jīng)元只是作為緩沖器,用來(lái)運(yùn)輸輸入信號(hào)到神經(jīng)元的隱層。在應(yīng)用分別的連接強(qiáng)度對(duì)輸入信號(hào)進(jìn)行加權(quán)后,隱層的每一個(gè)神經(jīng)元加和他的輸入信號(hào),有求和函數(shù)計(jì)算輸出值,可以表示為此式中是人工神經(jīng)網(wǎng)絡(luò)的功能函數(shù)之一。訓(xùn)練的神經(jīng)網(wǎng)絡(luò)由應(yīng)用不同的學(xué)習(xí)算法可調(diào)整的閾值構(gòu)成。學(xué)習(xí)算法給出了在時(shí)間t內(nèi)神經(jīng)元i與j之間閾值的連接強(qiáng)度。閾值的遞推公式如下:有許多應(yīng)用學(xué)習(xí)算法的文字描述。在我們的學(xué)習(xí)過(guò)程中應(yīng)用的神經(jīng)網(wǎng)絡(luò)算法有LM算法,BFGS算法,BR算法,CGF算法,和RP算法。再此文章中,多層感知器神經(jīng)網(wǎng)絡(luò)作為神經(jīng)網(wǎng)絡(luò)的線性化電路。這涉及的技術(shù)包括應(yīng)用神經(jīng)網(wǎng)絡(luò)估算熱電偶溫度值(神經(jīng)網(wǎng)絡(luò)的輸出值),此時(shí)給出的熱電偶輸出電壓作為輸入值。應(yīng)用之前所提及的學(xué)習(xí)算法訓(xùn)練人工神經(jīng)網(wǎng)絡(luò),進(jìn)而估算應(yīng)用不同的輸入值和相應(yīng)的測(cè)量值而訓(xùn)練出的網(wǎng)絡(luò)的溫度輸出值。人工神經(jīng)網(wǎng)絡(luò)的目標(biāo)輸出值和實(shí)際輸出值之間的差別通過(guò)學(xué)習(xí)算法悲劇算出來(lái),并應(yīng)用方程式1和2調(diào)整網(wǎng)絡(luò)閾值。我們應(yīng)用從熱電偶數(shù)據(jù)表得到的實(shí)驗(yàn)數(shù)據(jù)進(jìn)行實(shí)驗(yàn)。這些數(shù)據(jù)表是相對(duì)于特殊的溫度點(diǎn)而言的(通常是零攝氏度)。人工神經(jīng)網(wǎng)絡(luò)是應(yīng)用熱電偶的80個(gè)溫度點(diǎn)進(jìn)行訓(xùn)練的,這80個(gè)溫度點(diǎn)分布在-200°C到1000°C的范圍內(nèi),是在校正階段獲得的。然而,對(duì)于可能的輸入值,由訓(xùn)練得到的最終神經(jīng)網(wǎng)絡(luò)的特性并不是無(wú)偏差的。在訓(xùn)練之后,我們必須應(yīng)用獨(dú)立的測(cè)試系統(tǒng)來(lái)估計(jì)訓(xùn)練后網(wǎng)絡(luò)的特性。因此,熱電偶的分布在-200°C到1000°C的范圍內(nèi)其他20個(gè)數(shù)據(jù)被用來(lái)測(cè)試。在訓(xùn)練之前,在-1.0到1.0的范圍內(nèi),輸入與輸出數(shù)據(jù)組被標(biāo)準(zhǔn)化。在采用不同的學(xué)習(xí)算法和和不同的網(wǎng)絡(luò)構(gòu)造后,我們發(fā)現(xiàn)最適合的網(wǎng)絡(luò)構(gòu)造是1X7X3X1。采用LM算法。也就是說(shuō)第一隱層神經(jīng)元的數(shù)量是7,第二隱層神經(jīng)元的數(shù)量是3。輸入和輸出層采用線性函數(shù)。隱層采用雙曲線正切,對(duì)數(shù)的功能函數(shù)。訓(xùn)練的最大步數(shù)是1000步。對(duì)于與許多因素有關(guān)的、過(guò)大或過(guò)小的隱層神經(jīng)元數(shù)量,標(biāo)注這些標(biāo)準(zhǔn)是很重要的,像人工神經(jīng)網(wǎng)絡(luò)的類(lèi)型,訓(xùn)練數(shù)集的特性和應(yīng)用的類(lèi)型,如今,人工智能研究更加關(guān)注人工神經(jīng)網(wǎng)絡(luò)。結(jié)果和結(jié)論人工神經(jīng)網(wǎng)絡(luò)模型可以通過(guò)不同的學(xué)習(xí)算法如LM算法,BR算法,CGF算法,BP算法,BFGS算法進(jìn)行訓(xùn)練和測(cè)試,簡(jiǎn)單的結(jié)構(gòu)就可以獲得更高的特性和更快的收斂速度。對(duì)于以上所提及的相同的網(wǎng)絡(luò)構(gòu)造,表1顯示了應(yīng)用學(xué)習(xí)算法進(jìn)行分析的誤差。當(dāng)我們將神經(jīng)模型的性質(zhì)相互進(jìn)行比較時(shí),我們發(fā)現(xiàn)應(yīng)用LM算法訓(xùn)練的模型可以獲得最好的實(shí)驗(yàn)結(jié)果。采用LM算法進(jìn)行訓(xùn)練的網(wǎng)絡(luò)他的訓(xùn)練和測(cè)試誤差(最小均方誤差)分別為和。從表1我們可以清楚地看到,更接近LM的解可以從BR算法得到。在所提及的神經(jīng)網(wǎng)絡(luò)模型中,對(duì)于特殊應(yīng)用的RP的實(shí)驗(yàn)效果最差。他所強(qiáng)調(diào)的學(xué)習(xí)算法的精確度依靠寓所選擇恰當(dāng)?shù)膶W(xué)習(xí)參數(shù)、網(wǎng)絡(luò)的構(gòu)造和初始化值。圖3代表了對(duì)于E類(lèi)型的熱電偶采用LM算法訓(xùn)練網(wǎng)絡(luò)的誤差百比。從圖3可以看出,誤差的最大百分比低于0.3%。在-200°C到200°C之間的誤差百分比大于0.1%,這就是在此溫度范圍內(nèi)熱電偶非線性的原因。然而,200°C~200°C溫度范圍內(nèi),得到好的擬和曲線顯然要增加訓(xùn)練的數(shù)據(jù)數(shù)量。訓(xùn)練步數(shù)為1000步的學(xué)習(xí)算法仿真神經(jīng)模型,訓(xùn)練人工神經(jīng)網(wǎng)絡(luò),最小化最小均方誤差。隨著學(xué)習(xí)的進(jìn)程,最小均方誤差逐漸減少,最終穩(wěn)定在某一個(gè)最小值如圖4所示。結(jié)論,本論文提出了一種基于人工神經(jīng)網(wǎng)絡(luò)的高精度溫度測(cè)量技術(shù)。應(yīng)用LM
論大學(xué)生寫(xiě)作能力寫(xiě)作能力是對(duì)自己所積累的信息進(jìn)行選擇、提取、加工、改造并將之形成為書(shū)面文字的能力。積累是寫(xiě)作的基礎(chǔ),積累越厚實(shí),寫(xiě)作就越有基礎(chǔ),文章就能根深葉茂開(kāi)奇葩。沒(méi)有積累,胸?zé)o點(diǎn)墨,怎么也不會(huì)寫(xiě)出作文來(lái)的。寫(xiě)作能力是每個(gè)大學(xué)生必須具備的能力。從目前高校整體情況上看,大學(xué)生的寫(xiě)作能力較為欠缺。一、大學(xué)生應(yīng)用文寫(xiě)作能力的定義那么,大學(xué)生的寫(xiě)作能力究竟是指什么呢?葉圣陶先生曾經(jīng)說(shuō)過(guò),“大學(xué)畢業(yè)生不一定能寫(xiě)小說(shuō)詩(shī)歌,但是一定要寫(xiě)工作和生活中實(shí)用的文章,而且非寫(xiě)得既通順又扎實(shí)不可?!睂?duì)于大學(xué)生的寫(xiě)作能力應(yīng)包含什么,可能有多種理解,但從葉圣陶先生的談話中,我認(rèn)為:大學(xué)生寫(xiě)作能力應(yīng)包括應(yīng)用寫(xiě)作能力和文學(xué)寫(xiě)作能力,而前者是必須的,后者是“不一定”要具備,能具備則更好。眾所周知,對(duì)于大學(xué)生來(lái)說(shuō),是要寫(xiě)畢業(yè)論文的,我認(rèn)為寫(xiě)作論文的能力可以包含在應(yīng)用寫(xiě)作能力之中。大學(xué)生寫(xiě)作能力的體現(xiàn),也往往是在撰寫(xiě)畢業(yè)論文中集中體現(xiàn)出來(lái)的。本科畢業(yè)論文無(wú)論是對(duì)于學(xué)生個(gè)人還是對(duì)于院系和學(xué)校來(lái)說(shuō),都是十分重要的。如何提高本科畢業(yè)論文的質(zhì)量和水平
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025石方爆破專(zhuān)業(yè)施工合同
- 2025餐館合作經(jīng)營(yíng)合同
- 特殊人群的出行安全保障措施研究
- 網(wǎng)絡(luò)安全產(chǎn)品銷(xiāo)售中的技術(shù)合同法律解析
- 課題申報(bào)參考:康區(qū)佛苯藝術(shù)中的儒家人物形象演變與漢藏文化交融研究
- 環(huán)保理念下的小型機(jī)械設(shè)備創(chuàng)新設(shè)計(jì)實(shí)踐探討
- 2024年高等教育服務(wù)項(xiàng)目資金籌措計(jì)劃書(shū)
- 跨學(xué)科學(xué)習(xí)模式下的學(xué)生個(gè)性化發(fā)展
- 2025年人教版PEP七年級(jí)物理上冊(cè)階段測(cè)試試卷含答案
- 2025年蘇科新版必修1地理上冊(cè)階段測(cè)試試卷含答案
- 2025貴州貴陽(yáng)市屬事業(yè)單位招聘筆試和高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024年住院醫(yī)師規(guī)范化培訓(xùn)師資培訓(xùn)理論考試試題
- 期末綜合測(cè)試卷(試題)-2024-2025學(xué)年五年級(jí)上冊(cè)數(shù)學(xué)人教版
- 2024年廣東省公務(wù)員錄用考試《行測(cè)》試題及答案解析
- 結(jié)構(gòu)力學(xué)本構(gòu)模型:斷裂力學(xué)模型:斷裂力學(xué)實(shí)驗(yàn)技術(shù)教程
- 2024年貴州省中考理科綜合試卷(含答案)
- 無(wú)人機(jī)技術(shù)與遙感
- PDCA提高臥床患者踝泵運(yùn)動(dòng)的執(zhí)行率
- 新東方四級(jí)詞匯-正序版
- 借名購(gòu)車(chē)位協(xié)議書(shū)借名購(gòu)車(chē)位協(xié)議書(shū)模板(五篇)
- 同步輪尺寸參數(shù)表詳表參考范本
評(píng)論
0/150
提交評(píng)論