2023屆內(nèi)蒙古烏拉特前旗第一中學(xué)高考數(shù)學(xué)押題試卷含解析_第1頁
2023屆內(nèi)蒙古烏拉特前旗第一中學(xué)高考數(shù)學(xué)押題試卷含解析_第2頁
2023屆內(nèi)蒙古烏拉特前旗第一中學(xué)高考數(shù)學(xué)押題試卷含解析_第3頁
2023屆內(nèi)蒙古烏拉特前旗第一中學(xué)高考數(shù)學(xué)押題試卷含解析_第4頁
2023屆內(nèi)蒙古烏拉特前旗第一中學(xué)高考數(shù)學(xué)押題試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.2.某網(wǎng)店2019年全年的月收支數(shù)據(jù)如圖所示,則針對2019年這一年的收支情況,下列說法中錯(cuò)誤的是()A.月收入的極差為60 B.7月份的利潤最大C.這12個(gè)月利潤的中位數(shù)與眾數(shù)均為30 D.這一年的總利潤超過400萬元3.若兩個(gè)非零向量、滿足,且,則與夾角的余弦值為()A. B. C. D.4.已知三棱錐P﹣ABC的頂點(diǎn)都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.5.函數(shù)的圖象與函數(shù)的圖象的交點(diǎn)橫坐標(biāo)的和為()A. B. C. D.6.已知,則“m⊥n”是“m⊥l”的A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件7.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點(diǎn),直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點(diǎn),設(shè)λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣128.已知雙曲線C:()的左、右焦點(diǎn)分別為,過的直線l與雙曲線C的左支交于A、B兩點(diǎn).若,則雙曲線C的漸近線方程為()A. B. C. D.9.若平面向量,滿足,則的最大值為()A. B. C. D.10.在中,,,,則邊上的高為()A. B.2 C. D.11.某幾何體的三視圖如圖所示,則該幾何體的最長棱的長為()A. B. C. D.12.將一張邊長為的紙片按如圖(1)所示陰影部分裁去四個(gè)全等的等腰三角形,將余下部分沿虛線折疊并拼成一個(gè)有底的正四棱錐模型,如圖(2)放置,如果正四棱錐的主視圖是正三角形,如圖(3)所示,則正四棱錐的體積是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線(a>0,b>0)的一條漸近線方程為,則該雙曲線的離心率為_______.14.如圖,是一個(gè)四棱錐的平面展開圖,其中間是邊長為的正方形,上面三角形是等邊三角形,左、右三角形是等腰直角三角形,則此四棱錐的體積為_____.15.設(shè)O為坐標(biāo)原點(diǎn),,若點(diǎn)B(x,y)滿足,則的最大值是__________.16.已知函數(shù),,若函數(shù)有3個(gè)不同的零點(diǎn)x1,x2,x3(x1<x2<x3),則的取值范圍是_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)數(shù)陣,其中、、、.設(shè),其中,且.定義變換為“對于數(shù)陣的每一行,若其中有或,則將這一行中每個(gè)數(shù)都乘以;若其中沒有且沒有,則這一行中所有數(shù)均保持不變”(、、、).表示“將經(jīng)過變換得到,再將經(jīng)過變換得到、,以此類推,最后將經(jīng)過變換得到”,記數(shù)陣中四個(gè)數(shù)的和為.(1)若,寫出經(jīng)過變換后得到的數(shù)陣;(2)若,,求的值;(3)對任意確定的一個(gè)數(shù)陣,證明:的所有可能取值的和不超過.18.(12分)如圖,已知四棱錐的底面是等腰梯形,,,,,為等邊三角形,且點(diǎn)P在底面上的射影為的中點(diǎn)G,點(diǎn)E在線段上,且.(1)求證:平面.(2)求二面角的余弦值.19.(12分)已知函數(shù).(1)求曲線在點(diǎn)處的切線方程;(2)若對任意的,當(dāng)時(shí),都有恒成立,求最大的整數(shù).(參考數(shù)據(jù):)20.(12分)已知函數(shù).(1)求不等式的解集;(2)若函數(shù)的定義域?yàn)?求實(shí)數(shù)的取值范圍.21.(12分)某單位準(zhǔn)備購買三臺(tái)設(shè)備,型號(hào)分別為已知這三臺(tái)設(shè)備均使用同一種易耗品,提供設(shè)備的商家規(guī)定:可以在購買設(shè)備的同時(shí)購買該易耗品,每件易耗品的價(jià)格為100元,也可以在設(shè)備使用過程中,隨時(shí)單獨(dú)購買易耗品,每件易耗品的價(jià)格為200元.為了決策在購買設(shè)備時(shí)應(yīng)購買的易耗品的件數(shù).該單位調(diào)查了這三種型號(hào)的設(shè)備各60臺(tái),調(diào)査每臺(tái)設(shè)備在一個(gè)月中使用的易耗品的件數(shù),并得到統(tǒng)計(jì)表如下所示.每臺(tái)設(shè)備一個(gè)月中使用的易耗品的件數(shù)678型號(hào)A30300頻數(shù)型號(hào)B203010型號(hào)C04515將調(diào)查的每種型號(hào)的設(shè)備的頻率視為概率,各臺(tái)設(shè)備在易耗品的使用上相互獨(dú)立.(1)求該單位一個(gè)月中三臺(tái)設(shè)備使用的易耗品總數(shù)超過21件的概率;(2)以該單位一個(gè)月購買易耗品所需總費(fèi)用的期望值為決策依據(jù),該單位在購買設(shè)備時(shí)應(yīng)同時(shí)購買20件還是21件易耗品?22.(10分)在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù))和曲線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求直線和曲線的極坐標(biāo)方程;(2)在極坐標(biāo)系中,已知點(diǎn)是射線與直線的公共點(diǎn),點(diǎn)是與曲線的公共點(diǎn),求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

利用已知條件畫出幾何體的直觀圖,然后求解幾何體的體積.【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:.故選:.【點(diǎn)睛】本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關(guān)鍵.2、D【解析】

直接根據(jù)折線圖依次判斷每個(gè)選項(xiàng)得到答案.【詳解】由圖可知月收入的極差為,故選項(xiàng)A正確;1至12月份的利潤分別為20,30,20,10,30,30,60,40,30,30,50,30,7月份的利潤最高,故選項(xiàng)B正確;易求得總利潤為380萬元,眾數(shù)為30,中位數(shù)為30,故選項(xiàng)C正確,選項(xiàng)D錯(cuò)誤.故選:.【點(diǎn)睛】本題考查了折線圖,意在考查學(xué)生的理解能力和應(yīng)用能力.3、A【解析】

設(shè)平面向量與的夾角為,由已知條件得出,在等式兩邊平方,利用平面向量數(shù)量積的運(yùn)算律可求得的值,即為所求.【詳解】設(shè)平面向量與的夾角為,,可得,在等式兩邊平方得,化簡得.故選:A.【點(diǎn)睛】本題考查利用平面向量的模求夾角的余弦值,考查平面向量數(shù)量積的運(yùn)算性質(zhì)的應(yīng)用,考查計(jì)算能力,屬于中等題.4、D【解析】

由題意畫出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【詳解】如圖;設(shè)AB的中點(diǎn)為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設(shè)外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【點(diǎn)睛】本題考查多面體外接球表面積的求法,考查數(shù)形結(jié)合的解題思想方法,考查思維能力與計(jì)算能力,屬于中檔題.5、B【解析】

根據(jù)兩個(gè)函數(shù)相等,求出所有交點(diǎn)的橫坐標(biāo),然后求和即可.【詳解】令,有,所以或.又,所以或或或,所以函數(shù)的圖象與函數(shù)的圖象交點(diǎn)的橫坐標(biāo)的和,故選B.【點(diǎn)睛】本題主要考查三角函數(shù)的圖象及給值求角,側(cè)重考查數(shù)學(xué)建模和數(shù)學(xué)運(yùn)算的核心素養(yǎng).6、B【解析】

構(gòu)造長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,然后再在這兩個(gè)面中根據(jù)題意恰當(dāng)?shù)倪x取直線為m,n即可進(jìn)行判斷.【詳解】如圖,取長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,直線=直線。若令A(yù)D1=m,AB=n,則m⊥n,但m不垂直于若m⊥,由平面平面可知,直線m垂直于平面β,所以m垂直于平面β內(nèi)的任意一條直線∴m⊥n是m⊥的必要不充分條件.故選:B.【點(diǎn)睛】本題考點(diǎn)有兩個(gè):①考查了充分必要條件的判斷,在確定好大前提的條件下,從m⊥n?m⊥?和m⊥?m⊥n?兩方面進(jìn)行判斷;②是空間的垂直關(guān)系,一般利用長方體為載體進(jìn)行分析.7、D【解析】

分別聯(lián)立直線與拋物線的方程,利用韋達(dá)定理,可得,,然后計(jì)算,可得結(jié)果.【詳解】設(shè),聯(lián)立則,因?yàn)橹本€經(jīng)過C的焦點(diǎn),所以.同理可得,所以故選:D.【點(diǎn)睛】本題考查的是直線與拋物線的交點(diǎn)問題,運(yùn)用拋物線的焦點(diǎn)弦求參數(shù),屬基礎(chǔ)題。8、D【解析】

設(shè),利用余弦定理,結(jié)合雙曲線的定義進(jìn)行求解即可.【詳解】設(shè),由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【點(diǎn)睛】本題考查了雙曲線的定義的應(yīng)用,考查了余弦定理的應(yīng)用,考查了雙曲線的漸近線方程,考查了數(shù)學(xué)運(yùn)算能力.9、C【解析】

可根據(jù)題意把要求的向量重新組合成已知向量的表達(dá),利用向量數(shù)量積的性質(zhì),化簡為三角函數(shù)最值.【詳解】由題意可得:,,,故選:C【點(diǎn)睛】本題主要考查根據(jù)已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達(dá)是本題的關(guān)鍵點(diǎn).本題屬中檔題.10、C【解析】

結(jié)合正弦定理、三角形的內(nèi)角和定理、兩角和的正弦公式,求得邊長,由此求得邊上的高.【詳解】過作,交的延長線于.由于,所以為鈍角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即邊上的高為.故選:C【點(diǎn)睛】本小題主要考查正弦定理解三角形,考查三角形的內(nèi)角和定理、兩角和的正弦公式,屬于中檔題.11、D【解析】

先根據(jù)三視圖還原幾何體是一個(gè)四棱錐,根據(jù)三視圖的數(shù)據(jù),計(jì)算各棱的長度.【詳解】根據(jù)三視圖可知,幾何體是一個(gè)四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長棱的長為故選:D【點(diǎn)睛】本題主要考查三視圖的應(yīng)用,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.12、B【解析】設(shè)折成的四棱錐的底面邊長為,高為,則,故由題設(shè)可得,所以四棱錐的體積,應(yīng)選答案B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)題意,由雙曲線的漸近線方程可得,即a=2b,進(jìn)而由雙曲線的幾何性質(zhì)可得cb,由雙曲線的離心率公式計(jì)算可得答案.【詳解】根據(jù)題意,雙曲線的漸近線方程為y=±x,又由該雙曲線的一條漸近線方程為x﹣2y=0,即yx,則有,即a=2b,則cb,則該雙曲線的離心率e;故答案為:.【點(diǎn)睛】本題考查雙曲線的幾何性質(zhì),關(guān)鍵是分析a、b之間的關(guān)系,屬于基礎(chǔ)題.14、【解析】

畫圖直觀圖可得該幾何體為棱錐,再計(jì)算高求解體積即可.【詳解】解:如圖,是一個(gè)四棱錐的平面展開圖,其中間是邊長為的正方形,上面三角形是等邊三角形,左、右三角形是等腰直角三角形,此四棱錐中,是邊長為的正方形,是邊長為的等邊三角形,故,又,故平面平面,的高是四棱錐的高,此四棱錐的體積為:.故答案為:.【點(diǎn)睛】本題主要考查了四棱錐中的長度計(jì)算以及垂直的判定和體積計(jì)算等,需要根據(jù)題意15、【解析】,可行域如圖,直線與圓相切時(shí)取最大值,由16、【解析】

先根據(jù)題意,求出的解得或,然后求出f(x)的導(dǎo)函數(shù),求其單調(diào)性以及最值,在根據(jù)題意求出函數(shù)有3個(gè)不同的零點(diǎn)x1,x2,x3(x1<x2<x3),分情況討論求出的取值范圍.【詳解】解:令t=f(x),函數(shù)有3個(gè)不同的零點(diǎn),即+m=0有兩個(gè)不同的解,解之得即或因?yàn)榈膶?dǎo)函數(shù),令,解得x>e,,解得0<x<e,可得f(x)在(0,e)遞增,在遞減;f(x)的最大值為,且且f(1)=0;要使函數(shù)有3個(gè)不同的零點(diǎn),(1)有兩個(gè)不同的解,此時(shí)有一個(gè)解;(2)有兩個(gè)不同的解,此時(shí)有一個(gè)解當(dāng)有兩個(gè)不同的解,此時(shí)有一個(gè)解,此時(shí),不符合題意;或是不符合題意;所以只能是解得,此時(shí)=-m,此時(shí)有兩個(gè)不同的解,此時(shí)有一個(gè)解此時(shí),不符合題意;或是不符合題意;所以只能是解得,此時(shí)=,綜上:的取值范圍是故答案為【點(diǎn)睛】本題主要考查了函數(shù)與導(dǎo)函數(shù)的綜合,考查到了函數(shù)的零點(diǎn),導(dǎo)函數(shù)的應(yīng)用,以及數(shù)形結(jié)合的思想、分類討論的思想,屬于綜合性極強(qiáng)的題目,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)見解析.【解析】

(1)由,能求出經(jīng)過變換后得到的數(shù)陣;(2)由,,求出數(shù)陣經(jīng)過變化后的矩陣,進(jìn)而可求得的值;(3)分和兩種情況討論,推導(dǎo)出變換后數(shù)陣的第一行和第二行的數(shù)字之和,由此能證明的所有可能取值的和不超過.【詳解】(1),經(jīng)過變換后得到的數(shù)陣;(2)經(jīng)變換后得,故;(3)若,在的所有非空子集中,含有且不含的子集共個(gè),經(jīng)過變換后第一行均變?yōu)?、;含有且不含的子集共個(gè),經(jīng)過變換后第一行均變?yōu)椤?;同時(shí)含有和的子集共個(gè),經(jīng)過變換后第一行仍為、;不含也不含的子集共個(gè),經(jīng)過變換后第一行仍為、.所以經(jīng)過變換后所有的第一行的所有數(shù)的和為.若,則的所有非空子集中,含有的子集共個(gè),經(jīng)過變換后第一行均變?yōu)?、;不含有的子集共個(gè),經(jīng)過變換后第一行仍為、.所以經(jīng)過變換后所有的第一行的所有數(shù)的和為.同理,經(jīng)過變換后所有的第二行的所有數(shù)的和為.所以的所有可能取值的和為,又因?yàn)?、、、,所以的所有可能取值的和不超過.【點(diǎn)睛】本題考查數(shù)陣變換的求法,考查數(shù)陣中四個(gè)數(shù)的和不超過的證明,考查類比推理、數(shù)陣變換等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,綜合性強(qiáng),難度大.18、(1)證明見解析(2)【解析】

(1)由等腰梯形的性質(zhì)可證得,由射影可得平面,進(jìn)而求證;(2)取的中點(diǎn)F,連接,以G為原點(diǎn),所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標(biāo)系,分別求得平面與平面的法向量,再利用數(shù)量積求解即可.【詳解】(1)在等腰梯形中,點(diǎn)E在線段上,且,點(diǎn)E為上靠近C點(diǎn)的四等分點(diǎn),,,,,點(diǎn)P在底面上的射影為的中點(diǎn)G,連接,平面,平面,.又,平面,平面,平面.(2)取的中點(diǎn)F,連接,以G為原點(diǎn),所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標(biāo)系,如圖所示,由(1)易知,,,又,,,為等邊三角形,,則,,,,,,,,,設(shè)平面的法向量為,則,即,令,則,,,設(shè)平面的法向量為,則,即,令,則,,,設(shè)平面與平面的夾角為θ,則二面角的余弦值為.【點(diǎn)睛】本題考查線面垂直的證明,考查空間向量法求二面角,考查運(yùn)算能力與空間想象能力.19、(1)(2)2【解析】

(1)先求得切點(diǎn)坐標(biāo),利用導(dǎo)數(shù)求得切線的斜率,由此求得切線方程.(2)對分成,兩種情況進(jìn)行分類討論.當(dāng)時(shí),將不等式轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的最小值(設(shè)為)的取值范圍,由的得在上恒成立,結(jié)合一元二次不等式恒成立,判別式小于零列不等式,解不等式求得的取值范圍.【詳解】(1)已知函數(shù),則處即為,又,,可知函數(shù)過點(diǎn)的切線為,即.(2)注意到,不等式中,當(dāng)時(shí),顯然成立;當(dāng)時(shí),不等式可化為令,則,,所以存在,使.由于在上遞增,在上遞減,所以是的唯一零點(diǎn).且在區(qū)間上,遞減,在區(qū)間上,遞增,即的最小值為,令,則,將的最小值設(shè)為,則,因此原式需滿足,即在上恒成立,又,可知判別式即可,即,且可以取到的最大整數(shù)為2.【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求切線方程,考查利用導(dǎo)數(shù)研究不等式恒成立問題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.20、(1)(2)【解析】

(1)分類討論,去掉絕對值,化為與之等價(jià)的三個(gè)不等式組,求得每個(gè)不等式組的解集,再取并集即可.(2)要使函數(shù)的定義域?yàn)镽,只要的最小值大于0即可,根據(jù)絕對值不等式的性質(zhì)求得最小值即可得到答案.【詳解】(1)不等式或或,解得或,即x>0,所以原不等式的解集為.(2)要使函數(shù)的定義域?yàn)镽,只要的最小值大于0即可,又,當(dāng)且僅當(dāng)時(shí)取等,只需最小值,即.所以實(shí)數(shù)a的取值范圍是.【點(diǎn)睛】本題考查絕對值不等式的解法,考查利用絕對值三角不等式求最值,屬基礎(chǔ)題.21、(1)(2)應(yīng)該購買21件易耗品【解析】

(1)由統(tǒng)計(jì)表中數(shù)據(jù)可得型號(hào)分別為在一個(gè)月使用易耗

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論