版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,網(wǎng)格中的每個小正方形的邊長是1,點M,N,O均為格點,點N在⊙O上,若過點M作⊙O的一條切線MK,切點為K,則MK=()A.3 B.2 C.5 D.2.下列對一元二次方程x2+x﹣3=0根的情況的判斷,正確的是()A.有兩個不相等實數(shù)根 B.有兩個相等實數(shù)根C.有且只有一個實數(shù)根 D.沒有實數(shù)根3.如圖,有一張三角形紙片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿著箭頭方向剪開,可能得不到全等三角形紙片的是()A. B.C. D.4.如圖所示是小孔成像原理的示意圖,根據(jù)圖中所標(biāo)注的尺寸,求出這支蠟燭在暗盒中所成像的長()A. B. C. D.5.已知兩組數(shù)據(jù),2、3、4和3、4、5,那么下列說法正確的是()A.中位數(shù)不相等,方差不相等B.平均數(shù)相等,方差不相等C.中位數(shù)不相等,平均數(shù)相等D.平均數(shù)不相等,方差相等6.某圓錐的主視圖是一個邊長為3cm的等邊三角形,那么這個圓錐的側(cè)面積是()A.4.5πcm2 B.3cm2 C.4πcm2 D.3πcm27.如圖,先鋒村準(zhǔn)備在坡角為的山坡上栽樹,要求相鄰兩樹之間的水平距離為米,那么這兩樹在坡面上的距離為()A. B. C.5cosα D.8.下列事件中為必然事件的是()A.打開電視機,正在播放茂名新聞 B.早晨的太陽從東方升起C.隨機擲一枚硬幣,落地后正面朝上 D.下雨后,天空出現(xiàn)彩虹9.把多項式x2+ax+b分解因式,得(x+1)(x-3),則a、b的值分別是()A.a(chǎn)=2,b=3 B.a(chǎn)=-2,b=-3C.a(chǎn)=-2,b=3 D.a(chǎn)=2,b=-310.如圖是一個由5個相同的正方體組成的立體圖形,它的主視圖是()A. B.C. D.11.如圖是某幾何體的三視圖,下列判斷正確的是()A.幾何體是圓柱體,高為2 B.幾何體是圓錐體,高為2C.幾何體是圓柱體,半徑為2 D.幾何體是圓錐體,直徑為212.已知空氣的單位體積質(zhì)量是0.001239g/cm3,則用科學(xué)記數(shù)法表示該數(shù)為()A.1.239×10﹣3g/cm3 B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3 D.12.39×10﹣4g/cm3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.我們知道,四邊形具有不穩(wěn)定性.如圖,在平面直角坐標(biāo)系中,邊長為2的正方形ABCD的邊AB在x軸上,AB的中點是坐標(biāo)原點O,固定點A,B,把正方形沿箭頭方向推,使點D落在y軸正半軸上點D'處,則點C的對應(yīng)點C'的坐標(biāo)為_____.14.如圖,在矩形ABCD中,AD=5,AB=8,點E為射線DC上一個動點,把△ADE沿直線AE折疊,當(dāng)點D的對應(yīng)點F剛好落在線段AB的垂直平分線上時,則DE的長為_____.15.如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AC與BD相交于點E,AC=BC,DE=3,AD=5,則⊙O的半徑為___________.16.口袋中裝有4個小球,其中紅球3個,黃球1個,從中隨機摸出兩球,都是紅球的概率為_________.17.如圖所示,擺第一個“小屋子”要5枚棋子,擺第二個要11枚棋子,擺第三個要17枚棋子,則擺第30個“小屋子”要___枚棋子.18.安全問題大于天,為加大宣傳力度,提高學(xué)生的安全意識,樂陵某學(xué)校在進行防溺水安全教育活動中,將以下幾種在游泳時的注意事項寫在紙條上并折好,內(nèi)容分別是:①互相關(guān)心;②互相提醒;③不要相互嬉水;④相互比潛水深度;⑤選擇水流湍急的水域;⑥選擇有人看護的游泳池.小穎從這6張紙條中隨機抽出一張,抽到內(nèi)容描述正確的紙條的概率是_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)計算:.20.(6分)綜合與實踐﹣﹣﹣折疊中的數(shù)學(xué)在學(xué)習(xí)完特殊的平行四邊形之后,某學(xué)習(xí)小組針對矩形中的折疊問題進行了研究.問題背景:在矩形ABCD中,點E、F分別是BC、AD上的動點,且BE=DF,連接EF,將矩形ABCD沿EF折疊,點C落在點C′處,點D落在點D′處,射線EC′與射線DA相交于點M.猜想與證明:(1)如圖1,當(dāng)EC′與線段AD交于點M時,判斷△MEF的形狀并證明你的結(jié)論;操作與畫圖:(2)當(dāng)點M與點A重合時,請在圖2中作出此時的折痕EF和折疊后的圖形(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,標(biāo)注相應(yīng)的字母);操作與探究:(3)如圖3,當(dāng)點M在線段DA延長線上時,線段C′D'分別與AD,AB交于P,N兩點時,C′E與AB交于點Q,連接MN并延長MN交EF于點O.求證:MO⊥EF且MO平分EF;(4)若AB=4,AD=4,在點E由點B運動到點C的過程中,點D'所經(jīng)過的路徑的長為.21.(6分)如圖,二次函數(shù)的圖象與x軸交于和兩點,與y軸交于點C,一次函數(shù)的圖象過點A、C.(1)求二次函數(shù)的表達式(2)根據(jù)函數(shù)圖象直接寫出使二次函數(shù)值大于一次函數(shù)值的自變量x的取值范圍.22.(8分)如圖,在梯形中,,,,,點為邊上一動點,作⊥,垂足在邊上,以點為圓心,為半徑畫圓,交射線于點.(1)當(dāng)圓過點時,求圓的半徑;(2)分別聯(lián)結(jié)和,當(dāng)時,以點為圓心,為半徑的圓與圓相交,試求圓的半徑的取值范圍;(3)將劣弧沿直線翻折交于點,試通過計算說明線段和的比值為定值,并求出次定值.23.(8分)如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點E,交CB的延長線于點F,連接AF,BE.(1)求證:△AGE≌△BGF;(2)試判斷四邊形AFBE的形狀,并說明理由.24.(10分)2018年4月22日是第49個世界地球日,今年的主題為“珍惜自然資源呵護美麗國土一講好我們的地球故事”地球日活動周中,同學(xué)們開展了豐富多彩的學(xué)習(xí)活動,某小組搜集到的數(shù)據(jù)顯示,山西省總面積為15.66萬平方公里,其中土石山區(qū)面積約5.59萬平方公里,其余部分為丘陵與平原,丘陵面積比平原面積的2倍還多0.8萬平方公里.(1)求山西省的丘陵面積與平原面積;(2)活動周期間,兩位家長計劃帶領(lǐng)若干學(xué)生去參觀山西地質(zhì)博物館,他們聯(lián)系了兩家旅行社,報價均為每人30元.經(jīng)協(xié)商,甲旅行社的優(yōu)惠條件是,家長免費,學(xué)生都按九折收費;乙旅行社的優(yōu)惠條件是,家長、學(xué)生都按八折收費.若只考慮收費,這兩位家長應(yīng)該選擇哪家旅行社更合算?25.(10分)已知:如圖,在半徑是4的⊙O中,AB、CD是兩條直徑,M是OB的中點,CM的延長線交⊙O于點E,且EM>MC,連接DE,DE=.(1)求證:△AMC∽△EMB;(2)求EM的長;(3)求sin∠EOB的值.26.(12分)服裝店準(zhǔn)備購進甲乙兩種服裝,甲種每件進價80元,售價120元;乙種每件進價60元,售價90元,計劃購進兩種服裝共100件,其中甲種服裝不少于65件.(1)若購進這100件服裝的費用不得超過7500,則甲種服裝最多購進多少件?(2)在(1)條件下,該服裝店在5月1日當(dāng)天對甲種服裝以每件優(yōu)惠a(0<a<20)元的價格進行優(yōu)惠促銷活動,乙種服裝價格不變,那么該服裝店應(yīng)如何調(diào)整進貨方案才能獲得最大利潤?27.(12分)如圖1,正方形ABCD的邊長為4,把三角板的直角頂點放置BC中點E處,三角板繞點E旋轉(zhuǎn),三角板的兩邊分別交邊AB、CD于點G、F.(1)求證:△GBE∽△GEF.(2)設(shè)AG=x,GF=y,求Y關(guān)于X的函數(shù)表達式,并寫出自變量取值范圍.(3)如圖2,連接AC交GF于點Q,交EF于點P.當(dāng)△AGQ與△CEP相似,求線段AG的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
以O(shè)M為直徑作圓交⊙O于K,利用圓周角定理得到∠MKO=90°.從而得到KM⊥OK,進而利用勾股定理求解.【詳解】如圖所示:MK=.故選:B.【點睛】考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系.2、A【解析】【分析】根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出△=13>0,進而即可得出方程x2+x﹣3=0有兩個不相等的實數(shù)根.【詳解】∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有兩個不相等的實數(shù)根,故選A.【點睛】本題考查了根的判別式,一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.3、C【解析】
根據(jù)全等三角形的判定定理進行判斷.【詳解】解:A、由全等三角形的判定定理SAS證得圖中兩個小三角形全等,故本選項不符合題意;B、由全等三角形的判定定理SAS證得圖中兩個小三角形全等,故本選項不符合題意;C、如圖1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其對應(yīng)邊應(yīng)該是BE和CF,而已知給的是BD=FC=3,所以不能判定兩個小三角形全等,故本選項符合題意;D、如圖2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定兩個小三角形全等,故本選項不符合題意;由于本題選擇可能得不到全等三角形紙片的圖形,故選C.【點睛】本題考查了全等三角形的判定,注意三角形邊和角的對應(yīng)關(guān)系是關(guān)鍵.4、D【解析】
過O作直線OE⊥AB,交CD于F,由CD//AB可得△OAB∽△OCD,根據(jù)相似三角形對應(yīng)邊的比等于對應(yīng)高的比列方程求出CD的值即可.【詳解】過O作直線OE⊥AB,交CD于F,∵AB//CD,∴OF⊥CD,OE=12,OF=2,∴△OAB∽△OCD,∵OE、OF分別是△OAB和△OCD的高,∴,即,解得:CD=1.故選D.【點睛】本題考查相似三角形的應(yīng)用,解題的關(guān)鍵在于理解小孔成像原理給我們帶來的已知條件,熟記相似三角形對應(yīng)邊的比等于對應(yīng)高的比是解題關(guān)鍵.5、D【解析】
分別利用平均數(shù)以及方差和中位數(shù)的定義分析,進而求出答案.【詳解】2、3、4的平均數(shù)為:(2+3+4)=3,中位數(shù)是3,方差為:[(2﹣3)2+(3﹣3)2+(3﹣4)2]=;3、4、5的平均數(shù)為:(3+4+5)=4,中位數(shù)是4,方差為:[(3﹣4)2+(4﹣4)2+(5﹣4)2]=;故中位數(shù)不相等,方差相等.故選:D.【點睛】本題考查了平均數(shù)、中位數(shù)、方差的意義,解答本題的關(guān)鍵是熟練掌握這三種數(shù)的計算方法.6、A【解析】
根據(jù)已知得出圓錐的底面半徑及母線長,那么利用圓錐的側(cè)面積=底面周長×母線長÷2求出即可.【詳解】∵圓錐的軸截面是一個邊長為3cm的等邊三角形,∴底面半徑=1.5cm,底面周長=3πcm,∴圓錐的側(cè)面積=12×3π×3=4.5πcm2故選A.【點睛】此題主要考查了圓錐的有關(guān)計算,關(guān)鍵是利用圓錐的側(cè)面積=底面周長×母線長÷2得出.7、D【解析】
利用所給的角的余弦值求解即可.【詳解】∵BC=5米,∠CBA=∠α,∴AB==.故選D.【點睛】本題主要考查學(xué)生對坡度、坡角的理解及運用.8、B【解析】分析:根據(jù)必然事件、不可能事件、隨機事件的概念可區(qū)別各類事件:A、打開電視機,正在播放茂名新聞,可能發(fā)生,也可能不發(fā)生,是隨機事件,故本選項錯誤;B、早晨的太陽從東方升起,是必然事件,故本選項正確;C、隨機擲一枚硬幣,落地后可能正面朝上,也可能背面朝上,故本選項錯誤;D、下雨后,天空出現(xiàn)彩虹,可能發(fā)生,也可能不發(fā)生,故本選項錯誤.故選B.9、B【解析】分析:根據(jù)整式的乘法,先還原多項式,然后對應(yīng)求出a、b即可.詳解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故選B.點睛:此題主要考查了整式的乘法和因式分解的關(guān)系,利用它們之間的互逆運算的關(guān)系是解題關(guān)鍵.10、A【解析】
畫出從正面看到的圖形即可得到它的主視圖.【詳解】這個幾何體的主視圖為:故選:A.【點睛】本題考查了簡單組合體的三視圖:畫簡單組合體的三視圖要循序漸進,通過仔細觀察和想象,再畫它的三視圖.11、A【解析】試題解析:根據(jù)主視圖和左視圖為矩形是柱體,根據(jù)俯視圖是圓可判斷出這個幾何體應(yīng)該是圓柱,再根據(jù)左視圖的高度得出圓柱體的高為2;故選A.考點:由三視圖判斷幾何體.12、A【解析】試題分析:0.001219=1.219×10﹣1.故選A.考點:科學(xué)記數(shù)法—表示較小的數(shù).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(2,)【解析】過C作CH于H,由題意得2AO=AD’,所以∠D’AO=60°,AO=1,AD’=2,勾股定理知OD’=,BH=AO所以C’(2,).故答案為(2,).14、或10【解析】
試題分析:根據(jù)題意,可分為E點在DC上和E在DC的延長線上,兩種情況求解即可:如圖①,當(dāng)點E在DC上時,點D的對應(yīng)點F剛好落在線段AB的垂直平分線QP上,易求FP=3,所以FQ=2,設(shè)FE=x,則FE=x,QE=4-x,在Rt△EQF中,(4-x)2+22=x2,所以x=.(2)如圖②,當(dāng),所以FQ=點E在DG的延長線上時,點D的對應(yīng)點F剛好落在線段AB的垂直平分線QP上,易求FP=3,所以FQ=8,設(shè)DE=x,則FE=x,QE=x-4,在Rt△EQF中,(x-4)2+82=x2,所以x=10,綜上所述,DE=或10.15、【解析】
如圖,作輔助線CF;證明CF⊥AB(垂徑定理的推論);證明AD⊥AB,得到AD∥OC,△ADE∽△COE;得到AD:CO=DE:OE,求出CO的長,即可解決問題.【詳解】如圖,連接CO并延長,交AB于點F;∵AC=BC,∴CF⊥AB(垂徑定理的推論);∵BD是⊙O的直徑,∴AD⊥AB;設(shè)⊙O的半徑為r;∴AD∥OC,△ADE∽△COE,∴AD:CO=DE:OE,而DE=3,AD=5,OE=r-3,CO=r,∴5:r=3:(r-3),解得:r=,故答案為.【點睛】該題主要考查了相似三角形的判定及其性質(zhì)、垂徑定理的推論等幾何知識點的應(yīng)用問題;解題的關(guān)鍵是作輔助線,構(gòu)造相似三角形,靈活運用有關(guān)定來分析、判斷.16、【解析】
先畫出樹狀圖,用隨意摸出兩個球是紅球的結(jié)果個數(shù)除以所有可能的結(jié)果個數(shù)即可.【詳解】∵從中隨意摸出兩個球的所有可能的結(jié)果個數(shù)是12,隨意摸出兩個球是紅球的結(jié)果個數(shù)是6,∴從中隨意摸出兩個球的概率=;故答案為:.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.17、1.【解析】
根據(jù)題意分析可得:第1個圖案中棋子的個數(shù)5個,第2個圖案中棋子的個數(shù)5+6=11個,…,每個圖形都比前一個圖形多用6個,繼而可求出第30個“小屋子”需要的棋子數(shù).【詳解】根據(jù)題意分析可得:第1個圖案中棋子的個數(shù)5個.第2個圖案中棋子的個數(shù)5+6=11個.….每個圖形都比前一個圖形多用6個.∴第30個圖案中棋子的個數(shù)為5+29×6=1個.故答案為1.【點睛】考核知識點:圖形的規(guī)律.分析出一般數(shù)量關(guān)系是關(guān)鍵.18、【解析】
根據(jù)事件的描述可得到描述正確的有①②③⑥,即可得到答案.【詳解】∵共有6張紙條,其中正確的有①互相關(guān)心;②互相提醒;③不要相互嬉水;⑥選擇有人看護的游泳池,共4張,∴抽到內(nèi)容描述正確的紙條的概率是,故答案為:.【點睛】此題考查簡單事件的概率的計算,正確掌握事件的概率計算公式是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、【解析】
直接利用負(fù)整數(shù)指數(shù)冪的性質(zhì)以及絕對值的性質(zhì)、零指數(shù)冪的性質(zhì)以及特殊角的三角函數(shù)值化簡進而得出答案.【詳解】原式=9﹣2+1﹣2=.【點睛】本題考查了實數(shù)運算,正確化簡各數(shù)是解題的關(guān)鍵.20、(1)△MEF是等腰三角形(2)見解析(3)證明見解析(4)【解析】
(1)由AD∥BC,可得∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,依據(jù)∠MFE=∠MEF,即可得到ME=MF,進而得出△MEF是等腰三角形;(2)作AC的垂直平分線,即可得到折痕EF,依據(jù)軸對稱的性質(zhì),即可得到D'的位置;(3)依據(jù)△BEQ≌△D'FP,可得PF=QE,依據(jù)△NC'P≌△NAP,可得AN=C'N,依據(jù)Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,進而得到△MEF是等腰三角形,依據(jù)三線合一,即可得到MO⊥EF且MO平分EF;(4)依據(jù)點D'所經(jīng)過的路徑是以O(shè)為圓心,4為半徑,圓心角為240°的扇形的弧,即可得到點D'所經(jīng)過的路徑的長.【詳解】(1)△MEF是等腰三角形.理由:∵四邊形ABCD是矩形,∴AD∥BC,∴∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,∴∠MFE=∠MEF,∴ME=MF,∴△MEF是等腰三角形.(2)折痕EF和折疊后的圖形如圖所示:(3)如圖,∵FD=BE,由折疊可得,D'F=DF,∴BE=D'F,在△NC'Q和△NAP中,∠C'NQ=∠ANP,∠NC'Q=∠NAP=90°,∴∠C'QN=∠APN,∵∠C'QN=∠BQE,∠APN=∠D'PF,∴∠BQE=∠D'PF,在△BEQ和△D'FP中,,∴△BEQ≌△D'FP(AAS),∴PF=QE,∵四邊形ABCD是矩形,∴AD=BC,∴AD﹣FD=BC﹣BE,∴AF=CE,由折疊可得,C'E=EC,∴AF=C'E,∴AP=C'Q,在△NC'Q和△NAP中,,∴△NC'P≌△NAP(AAS),∴AN=C'N,在Rt△MC'N和Rt△MAN中,,∴Rt△MC'N≌Rt△MAN(HL),∴∠AMN=∠C'MN,由折疊可得,∠C'EF=∠CEF,∵四邊形ABCD是矩形,∴AD∥BC,∴∠AFE=∠FEC,∴∠C'EF=∠AFE,∴ME=MF,∴△MEF是等腰三角形,∴MO⊥EF且MO平分EF;(4)在點E由點B運動到點C的過程中,點D'所經(jīng)過的路徑是以O(shè)為圓心,4為半徑,圓心角為240°的扇形的弧,如圖:故其長為L=.故答案為.【點睛】此題是四邊形綜合題,主要考查了折疊問題與菱形的判定與性質(zhì)、弧長計算公式,等腰三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì)的綜合應(yīng)用,熟練掌握等腰三角形的判定定理和性質(zhì)定理是解本題的關(guān)鍵.21、(1);(2).【解析】
(1)將和兩點代入函數(shù)解析式即可;(2)結(jié)合二次函數(shù)圖象即可.【詳解】解:(1)∵二次函數(shù)與軸交于和兩點,解得∴二次函數(shù)的表達式為.(2)由函數(shù)圖象可知,二次函數(shù)值大于一次函數(shù)值的自變量x的取值范圍是.【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式以及二次函數(shù)與不等式,解題的關(guān)鍵是熟悉二次函數(shù)的性質(zhì).22、(1)x=1(2)(1)【解析】
(1)作AM⊥BC、連接AP,由等腰梯形性質(zhì)知BM=4、AM=1,據(jù)此知tanB=tanC=,從而可設(shè)PH=1k,則CH=4k、PC=5k,再表示出PA的長,根據(jù)PA=PH建立關(guān)于k的方程,解之可得;(2)由PH=PE=1k、CH=4k、PC=5k及BC=9知BE=9?8k,由△ABE∽△CEH得,據(jù)此求得k的值,從而得出圓P的半徑,再根據(jù)兩圓間的位置關(guān)系求解可得;(1)在圓P上取點F關(guān)于EH的對稱點G,連接EG,作PQ⊥EG、HN⊥BC,先證△EPQ≌△PHN得EQ=PN,由PH=1k、HC=4k、PC=5k知sinC=、cosC=,據(jù)此得出NC=k、HN=k及PN=PC?NC=k,繼而表示出EF、EH的長,從而出答案.【詳解】(1)作AM⊥BC于點M,連接AP,如圖1,∵梯形ABCD中,AD//BC,且AB=DC=5、AD=1、BC=9,∴BM=4、AM=1,∴tanB=tanC=,∵PH⊥DC,∴設(shè)PH=1k,則CH=4k、PC=5k,∵BC=9,∴PM=BC?BM?PC=5?5k,∴AP=AM+PM=9+(5?5k),∵PA=PH,∴9+(5?5k)=9k,解得:k=1或k=,當(dāng)k=時,CP=5k=>9,舍去;∴k=1,則圓P的半徑為1.(2)如圖2,由(1)知,PH=PE=1k、CH=4k、PC=5k,∵BC=9,∴BE=BC?PE?PC=9?8k,∵△ABE∽△CEH,∴,即,解得:k=,則PH=,即圓P的半徑為,∵圓B與圓P相交,且BE=9?8k=,∴<r<;(1)在圓P上取點F關(guān)于EH的對稱點G,連接EG,作PQ⊥EG于G,HN⊥BC于N,則EG=EF、∠1=∠1、EQ=QG、EF=EG=2EQ,∴∠GEP=2∠1,∵PE=PH,∴∠1=∠2,∴∠4=∠1+∠2=2∠1,∴∠GEP=∠4,∴△EPQ≌△PHN,∴EQ=PN,由(1)知PH=1k、HC=4k、PC=5k,∴sinC=、cosC=,∴NC=k、HN=k,∴PN=PC?NC=k,∴EF=EG=2EQ=2PN=k,EH=,∴,故線段EH和EF的比值為定值.【點睛】此題考查全等三角形的性質(zhì),相似三角形的性質(zhì),解直角三角形,勾股定理,解題關(guān)鍵在于作輔助線.23、(1)證明見解析(2)四邊形AFBE是菱形【解析】試題分析:(1)由平行四邊形的性質(zhì)得出AD∥BC,得出∠AEG=∠BFG,由AAS證明△AGE≌△BGF即可;(2)由全等三角形的性質(zhì)得出AE=BF,由AD∥BC,證出四邊形AFBE是平行四邊形,再根據(jù)EF⊥AB,即可得出結(jié)論.試題解析:(1)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,∵∠AEG=∠BFG,∠AGE=∠BGF,AG=BG,∴△AGE≌△BGF(AAS);(2)解:四邊形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四邊形AFBE是平行四邊形,又∵EF⊥AB,∴四邊形AFBE是菱形.考點:平行四邊形的性質(zhì);全等三角形的判定與性質(zhì);線段垂直平分線的性質(zhì);探究型.24、(1)平原面積為3.09平方公里,丘陵面積為6.98平方公里;(2)見解析.【解析】
(1)先設(shè)山西省的平原面積為x平方公里,則山西省的丘陵面積為(2x+0.8)平方公里,再根據(jù)總面積=平原面積+丘陵面積+土石山區(qū)面積列出等式求解即可;(2)先分別列出甲、乙兩個旅行社收費與學(xué)生人數(shù)的關(guān)系式,然后再分情況討論即可.【詳解】解:(1)設(shè)山西省的平原面積為x平方公里,則山西省的丘陵面積為(2x+0.8)平方公里.由題意:x+2x+0.8+5.59=15.66,解得x=3.09,2x+0.8=6.98,答:山西省的平原面積為3.09平方公里,則山西省的丘陵面積為6.98平方公里.(2)設(shè)去參觀山西地質(zhì)博物館的學(xué)生有m人,甲、乙旅行社的收費分別為y甲元,y乙元.由題意:y甲=30×0.9m=27m,y乙=30×0.8(m+2)=24m+48,當(dāng)y甲=y乙時,27m=24m+48,m=16,當(dāng)y甲>y乙時,27m>24m+48,m>16,當(dāng)y甲<y乙時,27m<24m+48,m<16,答:當(dāng)學(xué)生人數(shù)為16人時,兩個旅行社的費用一樣.當(dāng)學(xué)生人數(shù)為大于16人時,乙旅行社比較合算.當(dāng)學(xué)生人數(shù)為小于16人時,甲旅行社比較合算.【點睛】本題考查了一元一次方程的應(yīng)用,解題的關(guān)鍵是熟練的掌握一元一次方程的應(yīng)用.25、(1)證明見解析;(2)EM=4;(3)sin∠EOB=.【解析】
(1)連接A、C,E、B點,那么只需要求出△AMC和△EMB相似,即可求出結(jié)論,根據(jù)圓周角定理可推出它們的對應(yīng)角相等,即可得△AMC∽△EMB;
(2)根據(jù)圓周角定理,結(jié)合勾股定理,可以推出EC的長度,根據(jù)已知條件推出AM、BM的長度,然后結(jié)合(1)的結(jié)論,很容易就可求出EM的長度;
(3)過點E作EF⊥AB,垂足為點F,通過作輔助線,解直角三角形,結(jié)合已知條件和(1)(2)所求的值,可推出Rt△EOF各邊的長度,根據(jù)銳角三角函數(shù)的定義,便可求得sin∠EOB的值.【詳解】(1)證明:連接AC、EB,如圖1,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB;(2)解:∵DC是⊙O的直徑,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=,CD=8,且EC為正數(shù),∴EC=7,∵M為OB的中點,∴BM=2,AM=6,∵AM?BM=EM?CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:過點E作EF⊥AB,垂足為點F,如圖2,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴EF=,∴sin∠EOB=.【點睛】本題考查了圓心角、弧、弦、弦心距的關(guān)系與相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握圓心角、弧、弦、弦心距的關(guān)系與相似三角形的判定與性質(zhì).26、(1)甲種服裝最多購進75件,(2)見解析.【解析】
(1)設(shè)甲種服裝購進x件,則乙種服裝購進(100-x)件,然后根據(jù)購進這100件服裝的費用不得超過7500元,列出不等式解答即可;(2)首先求出總利潤W的表達式,然后針對a的不同取值范圍進行討論,分別確定其進貨方案.【詳解】(1)設(shè)購進甲種服裝x件,由題意可知:80x+60(100-x)≤7500,解得x≤75答:甲種服裝最多購進75件,(2)設(shè)總利潤為W元,W=(120-80-a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版木制別墅建造合同樣本
- 2024年私人租房合同附加房產(chǎn)增值收益分享協(xié)議2篇
- 2025年度旅游企業(yè)實習(xí)生服務(wù)技能與職業(yè)素養(yǎng)培養(yǎng)協(xié)議3篇
- 2024年版房屋買賣合同示范2篇
- 2024應(yīng)收賬款質(zhì)押擔(dān)保實務(wù)操作規(guī)范與合同履行風(fēng)險防范關(guān)注要點3篇
- 2024年聯(lián)合舉辦音樂會委托合同3篇
- 2025年度電力設(shè)施安全員聘用與故障排除合同3篇
- 2024版電氣安裝協(xié)議書3篇
- 重慶文化藝術(shù)職業(yè)學(xué)院《汽車可靠性技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 民辦合肥濱湖職業(yè)技術(shù)學(xué)院《Prote電路設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 《士兵突擊》PPT課件(PPT 43頁)
- AHP層次分析法-EXCEL表格自動計算
- 團代會工作流程圖
- 身心康中醫(yī)經(jīng)絡(luò)檢測儀—報告解讀
- 電力工程承裝(修、試)資質(zhì)管理辦法
- 急診科烏頭堿中毒課件
- 混凝土攪拌站污水處理方案精編版
- 2013天津中考滿分作文
- 醫(yī)院安保人員錄用上崗管理辦法
- 公共政策分析簡答題
- 加熱爐溫度控制系統(tǒng)_畢業(yè)論文
評論
0/150
提交評論