版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年中考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.2016年底安徽省已有13個(gè)市邁入“高鐵時(shí)代”,現(xiàn)正在建設(shè)的“合安高鐵”項(xiàng)目,計(jì)劃總投資334億元人民幣.把334億用科學(xué)記數(shù)法可表示為()A.0.334×1011B.3.34×10102.如圖,AB是的直徑,點(diǎn)C,D在上,若,則的度數(shù)為A. B. C. D.3.如圖,△ABC中,D為BC的中點(diǎn),以D為圓心,BD長(zhǎng)為半徑畫(huà)一弧交AC于E點(diǎn),若∠A=60°,∠B=100°,BC=4,則扇形BDE的面積為何?()A. B. C. D.4.如圖,AB為⊙O的直徑,C為⊙O上的一動(dòng)點(diǎn)(不與A、B重合),CD⊥AB于D,∠OCD的平分線交⊙O于P,則當(dāng)C在⊙O上運(yùn)動(dòng)時(shí),點(diǎn)P的位置()
A.隨點(diǎn)C的運(yùn)動(dòng)而變化B.不變C.在使PA=OA的劣弧上D.無(wú)法確定5.下列大學(xué)的校徽?qǐng)D案是軸對(duì)稱(chēng)圖形的是()A. B. C. D.6.在2018年新年賀詞中說(shuō)道:“安得廣廈千萬(wàn)間,大庇天下寒士俱歡顏!2017年我國(guó)3400000貧困人口實(shí)現(xiàn)易地扶貧搬遷、有了溫暖的新家.”其中3400000用科學(xué)記數(shù)法表示為()A.0.34×107 B.3.4×106 C.3.4×105 D.34×1057.甲、乙兩車(chē)從A地出發(fā),勻速駛向B地.甲車(chē)以80km/h的速度行駛1h后,乙車(chē)才沿相同路線行駛.乙車(chē)先到達(dá)B地并停留1h后,再以原速按原路返回,直至與甲車(chē)相遇.在此過(guò)程中,兩車(chē)之間的距離y(km)與乙車(chē)行駛時(shí)間x(h)之間的函數(shù)關(guān)系如圖所示.下列說(shuō)法:①乙車(chē)的速度是120km/h;②m=160;③點(diǎn)H的坐標(biāo)是(7,80);④n=7.1.其中說(shuō)法正確的有()A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)8.從邊長(zhǎng)為的大正方形紙板中挖去一個(gè)邊長(zhǎng)為的小正方形紙板后,將其裁成四個(gè)相同的等腰梯形(如圖甲),然后拼成一個(gè)平行四邊形(如圖乙)。那么通過(guò)計(jì)算兩個(gè)圖形陰影部分的面積,可以驗(yàn)證成立的公式為()A. B.C. D.9.設(shè)x1,x2是一元二次方程x2﹣2x﹣5=0的兩根,則x12+x22的值為()A.6 B.8 C.14 D.1610.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過(guò)點(diǎn)(0,1)和(﹣1,0).下列結(jié)論:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤當(dāng)x>﹣1時(shí),y>0,其中正確結(jié)論的個(gè)數(shù)是A.5個(gè) B.4個(gè) C.3個(gè) D.2個(gè)11.已知點(diǎn)A、B、C是直徑為6cm的⊙O上的點(diǎn),且AB=3cm,AC=3cm,則∠BAC的度數(shù)為()A.15°
B.75°或15°
C.105°或15°
D.75°或105°12.為了節(jié)約水資源,某市準(zhǔn)備按照居民家庭年用水量實(shí)行階梯水價(jià),水價(jià)分檔遞增,計(jì)劃使第一檔、第二檔和第三檔的水價(jià)分別覆蓋全市居民家庭的80%,15%和5%.為合理確定各檔之間的界限,隨機(jī)抽查了該市5萬(wàn)戶(hù)居民家庭上一年的年用水量(單位:m1),繪制了統(tǒng)計(jì)圖,如圖所示.下面有四個(gè)推斷:①年用水量不超過(guò)180m1的該市居民家庭按第一檔水價(jià)交費(fèi);②年用水量不超過(guò)240m1的該市居民家庭按第三檔水價(jià)交費(fèi);③該市居民家庭年用水量的中位數(shù)在150~180m1之間;④該市居民家庭年用水量的眾數(shù)約為110m1.其中合理的是()A.①③ B.①④ C.②③ D.②④二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.瑞士的一位中學(xué)教師巴爾末從光譜數(shù)據(jù),…中,成功地發(fā)現(xiàn)了其規(guī)律,從而得到了巴爾末公式,繼而打開(kāi)了光譜奧妙的大門(mén).請(qǐng)你根據(jù)這個(gè)規(guī)律寫(xiě)出第9個(gè)數(shù)_____.14.如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上的一點(diǎn),若BC=6,AB=10,OD⊥BC于點(diǎn)D,則OD的長(zhǎng)為_(kāi)_____.15.如圖,折疊矩形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知折痕AE=5cm,且tan∠EFC=,那么矩形ABCD的周長(zhǎng)_____________cm.16.如圖,已知一塊圓心角為270°的扇形鐵皮,用它做一個(gè)圓錐形的煙囪帽(接縫忽略不計(jì)),圓錐底面圓的直徑是60cm,則這塊扇形鐵皮的半徑是_____cm.17.如圖,△ABC的兩條高AD,BE相交于點(diǎn)F,請(qǐng)?zhí)砑右粋€(gè)條件,使得△ADC≌△BEC(不添加其他字母及輔助線),你添加的條件是_____.18.如圖,等邊三角形AOB的頂點(diǎn)A的坐標(biāo)為(﹣4,0),頂點(diǎn)B在反比例函數(shù)(x<0)的圖象上,則k=.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,拋物線y=ax2+bx+c與x軸的交點(diǎn)分別為A(﹣6,0)和點(diǎn)B(4,0),與y軸的交點(diǎn)為C(0,3).(1)求拋物線的解析式;(2)點(diǎn)P是線段OA上一動(dòng)點(diǎn)(不與點(diǎn)A重合),過(guò)P作平行于y軸的直線與AC交于點(diǎn)Q,點(diǎn)D、M在線段AB上,點(diǎn)N在線段AC上.①是否同時(shí)存在點(diǎn)D和點(diǎn)P,使得△APQ和△CDO全等,若存在,求點(diǎn)D的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;②若∠DCB=∠CDB,CD是MN的垂直平分線,求點(diǎn)M的坐標(biāo).20.(6分)如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.(1)求函數(shù)y=kx+b和y=的表達(dá)式;(2)已知點(diǎn)C(0,8),試在該一次函數(shù)圖象上確定一點(diǎn)M,使得MB=MC,求此時(shí)點(diǎn)M的坐標(biāo).21.(6分)計(jì)算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.22.(8分)“校園詩(shī)歌大賽”結(jié)束后,張老師和李老師將所有參賽選手的比賽成績(jī)(得分均為整數(shù))進(jìn)行整理,并分別繪制成扇形統(tǒng)計(jì)圖和頻數(shù)直方圖部分信息如下:本次比賽參賽選手共有人,扇形統(tǒng)計(jì)圖中“69.5~79.5”這一組人數(shù)占總參賽人數(shù)的百分比為;賽前規(guī)定,成績(jī)由高到低前60%的參賽選手獲獎(jiǎng).某參賽選手的比賽成績(jī)?yōu)?8分,試判斷他能否獲獎(jiǎng),并說(shuō)明理由;成績(jī)前四名是2名男生和2名女生,若從他們中任選2人作為獲獎(jiǎng)代表發(fā)言,試求恰好選中1男1女的概率.23.(8分)已知:關(guān)于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整數(shù)).(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;(2)若方程的兩個(gè)實(shí)數(shù)根都是整數(shù),求k的值.24.(10分)如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E,F(xiàn)分別在邊AB,AD上,且∠ECF=45°,CF的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)G,CE的延長(zhǎng)線交DA的延長(zhǎng)線于點(diǎn)H,連接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)線段AC,AG,AH什么關(guān)系?請(qǐng)說(shuō)明理由;(3)設(shè)AE=m,①△AGH的面積S有變化嗎?如果變化.請(qǐng)求出S與m的函數(shù)關(guān)系式;如果不變化,請(qǐng)求出定值.②請(qǐng)直接寫(xiě)出使△CGH是等腰三角形的m值.25.(10分)某工廠計(jì)劃生產(chǎn)A、B兩種產(chǎn)品共60件,需購(gòu)買(mǎi)甲、乙兩種材料.生產(chǎn)一件A產(chǎn)品需甲種材料4千克,乙種材料1千克;生產(chǎn)一件B產(chǎn)品需甲、乙兩種材料各3千克.經(jīng)測(cè)算,購(gòu)買(mǎi)甲、乙兩種材料各1千克共需資金60元;購(gòu)買(mǎi)甲種材料2千克和乙種材料3千克共需資金155元.(1)甲、乙兩種材料每千克分別是多少元?(2)現(xiàn)工廠用于購(gòu)買(mǎi)甲、乙兩種材料的資金不能超過(guò)10000元,且生產(chǎn)B產(chǎn)品要超過(guò)38件,問(wèn)有哪幾種符合條件的生產(chǎn)方案?(3)在(2)的條件下,若生產(chǎn)一件A產(chǎn)品需加工費(fèi)40元,若生產(chǎn)一件B產(chǎn)品需加工費(fèi)50元,應(yīng)選擇哪種生產(chǎn)方案,才能使生產(chǎn)這批產(chǎn)品的成本最低?請(qǐng)直接寫(xiě)出方案.26.(12分)中華文明,源遠(yuǎn)流長(zhǎng);中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽(tīng)寫(xiě)”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于50分.為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了其中200名學(xué)生的成績(jī)(成績(jī)x取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:成績(jī)x/分頻數(shù)頻率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:m=,n=;請(qǐng)補(bǔ)全頻數(shù)分布直方圖;若成績(jī)?cè)?0分以上(包括90分)的為“優(yōu)”等,則該校參加這次比賽的3000名學(xué)生中成績(jī)“優(yōu)”等約有多少人?27.(12分)如圖,在矩形紙片ABCD中,AB=6,BC=1.把△BCD沿對(duì)角線BD折疊,使點(diǎn)C落在C′處,BC′交AD于點(diǎn)G;E、F分別是C′D和BD上的點(diǎn),線段EF交AD于點(diǎn)H,把△FDE沿EF折疊,使點(diǎn)D落在D′處,點(diǎn)D′恰好與點(diǎn)A重合.(1)求證:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的長(zhǎng).
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).解:334億=3.34×1010“點(diǎn)睛”此題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.2、B【解析】試題解析:連接AC,如圖,∵AB為直徑,∴∠ACB=90°,∴∴故選B.點(diǎn)睛:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等.3、C【解析】分析:求出扇形的圓心角以及半徑即可解決問(wèn)題;詳解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=.故選C.點(diǎn)睛:本題考查扇形的面積公式、三角形內(nèi)角和定理等知識(shí),解題的關(guān)鍵是記住扇形的面積公式:S=.4、B【解析】
因?yàn)镃P是∠OCD的平分線,所以∠DCP=∠OCP,所以∠DCP=∠OPC,則CD∥OP,所以弧AP等于弧BP,所以PA=PB.從而可得出答案.【詳解】解:連接OP,∵CP是∠OCD的平分線,∴∠DCP=∠OCP,
又∵OC=OP,
∴∠OCP=∠OPC,
∴∠DCP=∠OPC,
∴CD∥OP,
又∵CD⊥AB,
∴OP⊥AB,
∴,
∴PA=PB.
∴點(diǎn)P是線段AB垂直平分線和圓的交點(diǎn),
∴當(dāng)C在⊙O上運(yùn)動(dòng)時(shí),點(diǎn)P不動(dòng).
故選:B.【點(diǎn)睛】本題考查了圓心角、弦、弧之間的關(guān)系,以及平行線的判定和性質(zhì),在同圓或等圓中,等弧對(duì)等弦.5、B【解析】
根據(jù)軸對(duì)稱(chēng)圖形的概念對(duì)各選項(xiàng)分析判斷即可得解.【詳解】解:A、不是軸對(duì)稱(chēng)圖形,故本選項(xiàng)錯(cuò)誤;
B、是軸對(duì)稱(chēng)圖形,故本選項(xiàng)正確;
C、不是軸對(duì)稱(chēng)圖形,故本選項(xiàng)錯(cuò)誤;
D、不是軸對(duì)稱(chēng)圖形,故本選項(xiàng)錯(cuò)誤.
故選:B.【點(diǎn)睛】本題考查了軸對(duì)稱(chēng)圖形的概念,軸對(duì)稱(chēng)圖形的關(guān)鍵是尋找對(duì)稱(chēng)軸,圖形兩部分折疊后可重合.6、B【解析】
解:3400000=.故選B.7、B【解析】
根據(jù)題意,兩車(chē)距離為函數(shù),由圖象可知兩車(chē)起始距離為80,從而得到乙車(chē)速度,根據(jù)圖象變化規(guī)律和兩車(chē)運(yùn)動(dòng)狀態(tài),得到相關(guān)未知量.【詳解】由圖象可知,乙出發(fā)時(shí),甲乙相距80km,2小時(shí)后,乙車(chē)追上甲.則說(shuō)明乙每小時(shí)比甲快40km,則乙的速度為120km/h.①正確;由圖象第2﹣6小時(shí),乙由相遇點(diǎn)到達(dá)B,用時(shí)4小時(shí),每小時(shí)比甲快40km,則此時(shí)甲乙距離4×40=160km,則m=160,②正確;當(dāng)乙在B休息1h時(shí),甲前進(jìn)80km,則H點(diǎn)坐標(biāo)為(7,80),③正確;乙返回時(shí),甲乙相距80km,到兩車(chē)相遇用時(shí)80÷(120+80)=0.4小時(shí),則n=6+1+0.4=7.4,④錯(cuò)誤.故選B.【點(diǎn)睛】本題以函數(shù)圖象為背景,考查雙動(dòng)點(diǎn)條件下,兩點(diǎn)距離與運(yùn)動(dòng)時(shí)間的函數(shù)關(guān)系,解答時(shí)既要注意圖象變化趨勢(shì),又要關(guān)注動(dòng)點(diǎn)的運(yùn)動(dòng)狀態(tài).8、D【解析】
分別根據(jù)正方形及平行四邊形的面積公式求得甲、乙中陰影部分的面積,從而得到可以驗(yàn)證成立的公式.【詳解】陰影部分的面積相等,即甲的面積=a2﹣b2,乙的面積=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以驗(yàn)證成立的公式為:a2﹣b2=(a+b)(a﹣b).故選:D.【點(diǎn)睛】考點(diǎn):等腰梯形的性質(zhì);平方差公式的幾何背景;平行四邊形的性質(zhì).9、C【解析】
根據(jù)根與系數(shù)的關(guān)系得到x1+x2=2,x1?x2=-5,再變形x12+x22得到(x1+x2)2-2x1?x2,然后利用代入計(jì)算即可.【詳解】∵一元二次方程x2-2x-5=0的兩根是x1、x2,
∴x1+x2=2,x1?x2=-5,
∴x12+x22=(x1+x2)2-2x1?x2=22-2×(-5)=1.
故選C.【點(diǎn)睛】考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系:若方程的兩根為x1,x2,則x1+x2=-,x1?x2=.10、B【解析】
解:∵二次函數(shù)y=ax3+bx+c(a≠3)過(guò)點(diǎn)(3,3)和(﹣3,3),∴c=3,a﹣b+c=3.①∵拋物線的對(duì)稱(chēng)軸在y軸右側(cè),∴,x>3.∴a與b異號(hào).∴ab<3,正確.②∵拋物線與x軸有兩個(gè)不同的交點(diǎn),∴b3﹣4ac>3.∵c=3,∴b3﹣4a>3,即b3>4a.正確.④∵拋物線開(kāi)口向下,∴a<3.∵ab<3,∴b>3.∵a﹣b+c=3,c=3,∴a=b﹣3.∴b﹣3<3,即b<3.∴3<b<3,正確.③∵a﹣b+c=3,∴a+c=b.∴a+b+c=3b>3.∵b<3,c=3,a<3,∴a+b+c=a+b+3<a+3+3=a+3<3+3=3.∴3<a+b+c<3,正確.⑤拋物線y=ax3+bx+c與x軸的一個(gè)交點(diǎn)為(﹣3,3),設(shè)另一個(gè)交點(diǎn)為(x3,3),則x3>3,由圖可知,當(dāng)﹣3<x<x3時(shí),y>3;當(dāng)x>x3時(shí),y<3.∴當(dāng)x>﹣3時(shí),y>3的結(jié)論錯(cuò)誤.綜上所述,正確的結(jié)論有①②③④.故選B.11、C【解析】解:如圖1.∵AD為直徑,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,則∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=3,∠CAD=45°,則∠BAC=105°;如圖2,.∵AD為直徑,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,則∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=3,∠CAD=45°,則∠BAC=15°.故選C.點(diǎn)睛:本題考查的是圓周角定理和銳角三角函數(shù)的知識(shí),掌握直徑所對(duì)的圓周角是直徑和熟記特殊角的三角函數(shù)值是解題的關(guān)鍵,注意分情況討論思想的運(yùn)用.12、B【解析】
利用條形統(tǒng)計(jì)圖結(jié)合中位數(shù)和中位數(shù)的定義分別分析得出答案.【詳解】①由條形統(tǒng)計(jì)圖可得:年用水量不超過(guò)180m1的該市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(萬(wàn)),
×100%=80%,故年用水量不超過(guò)180m1的該市居民家庭按第一檔水價(jià)交費(fèi),正確;
②∵年用水量超過(guò)240m1的該市居民家庭有(0.15+0.15+0.05)=0.15(萬(wàn)),
∴×100%=7%≠5%,故年用水量超過(guò)240m1的該市居民家庭按第三檔水價(jià)交費(fèi),故此選項(xiàng)錯(cuò)誤;
③∵5萬(wàn)個(gè)數(shù)據(jù)的中間是第25000和25001的平均數(shù),
∴該市居民家庭年用水量的中位數(shù)在120-150之間,故此選項(xiàng)錯(cuò)誤;
④該市居民家庭年用水量為110m1有1.5萬(wàn)戶(hù),戶(hù)數(shù)最多,該市居民家庭年用水量的眾數(shù)約為110m1,因此正確,
故選B.【點(diǎn)睛】此題主要考查了頻數(shù)分布直方圖以及中位數(shù)和眾數(shù)的定義,正確利用條形統(tǒng)計(jì)圖獲取正確信息是解題關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、.【解析】
分子的規(guī)律依次是:32,42,52,62,72,82,92…,分母的規(guī)律是:規(guī)律是:5+7=1212+9=2121+11=3232+13=45…,即分子為(n+2)2,分母為n(n+4).【詳解】解:由題可知規(guī)律,第9個(gè)數(shù)的分子是(9+2)2=121;第五個(gè)的分母是:32+13=45;第六個(gè)的分母是:45+15=60;第七個(gè)的分母是:60+17=77;第八個(gè)的分母是:77+19=96;則第九個(gè)的分母是:96+21=1.因而第九個(gè)數(shù)是:.故答案為:.【點(diǎn)睛】主要考查了學(xué)生的分析、總結(jié)、歸納能力,規(guī)律型的習(xí)題一般是從所給的數(shù)據(jù)和運(yùn)算方法進(jìn)行分析,從特殊值的規(guī)律上總結(jié)出一般性的規(guī)律.14、1【解析】
根據(jù)垂徑定理求得BD,然后根據(jù)勾股定理求得即可.【詳解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==1.故答案為1.【點(diǎn)睛】本題考查垂徑定理及其勾股定理,熟記定理并靈活應(yīng)用是本題的解題關(guān)鍵.15、36.【解析】試題分析:∵△AFE和△ADE關(guān)于AE對(duì)稱(chēng),∴∠AFE=∠D=90°,AF=AD,EF=DE.∵tan∠EFC==,∴可設(shè)EC=3x,CF=4x,那么EF=5x,∴DE=EF=5x.∴DC=DE+CE=3x+5x=8x.∴AB=DC=8x.∵∠EFC+∠AFB=90°,∠BAF+∠AFB=90°,∴∠EFC=∠BAF.∴tan∠BAF=tan∠EFC=,∴=.∴AB=8x,∴BF=6x.∴BC=BF+CF=10x.∴AD=10x.在Rt△ADE中,由勾股定理,得AD2+DE2=AE2.∴(10x)2+(5x)2=(5)2.解得x=1.∴AB=8x=8,AD=10x=10.∴矩形ABCD的周長(zhǎng)=8×2+10×2=36.考點(diǎn):折疊的性質(zhì);矩形的性質(zhì);銳角三角函數(shù);勾股定理.16、40cm【解析】
首先根據(jù)圓錐的底面直徑求得圓錐的底面周長(zhǎng),然后根據(jù)底面周長(zhǎng)等于展開(kāi)扇形的弧長(zhǎng)求得鐵皮的半徑即可.【詳解】∵圓錐的底面直徑為60cm,∴圓錐的底面周長(zhǎng)為60πcm,∴扇形的弧長(zhǎng)為60πcm,設(shè)扇形的半徑為r,則=60π,解得:r=40cm,故答案為:40cm.【點(diǎn)睛】本題考查了圓錐的計(jì)算,解題的關(guān)鍵是首先求得圓錐的底面周長(zhǎng),利用圓錐的底面周長(zhǎng)等于扇形的弧長(zhǎng)求解.17、AC=BC.【解析】分析:添加AC=BC,根據(jù)三角形高的定義可得∠ADC=∠BEC=90°,再證明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.詳解:添加AC=BC,∵△ABC的兩條高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中∠BEC=∴△ADC≌△BEC(AAS),故答案為:AC=BC.點(diǎn)睛:此題主要考查了三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.18、-4.【解析】
過(guò)點(diǎn)B作BD⊥x軸于點(diǎn)D,因?yàn)椤鰽OB是等邊三角形,點(diǎn)A的坐標(biāo)為(-4,0)所∠AOB=60°,根據(jù)銳角三角函數(shù)的定義求出BD及OD的長(zhǎng),可得出B點(diǎn)坐標(biāo),進(jìn)而得出反比例函數(shù)的解析式.【詳解】過(guò)點(diǎn)B作BD⊥x軸于點(diǎn)D,∵△AOB是等邊三角形,點(diǎn)A的坐標(biāo)為(﹣4,0),∴∠AOB=60°,OB=OA=AB=4,∴OD=OB=2,BD=OB?sin60°=4×=2,∴B(﹣2,2),∴k=﹣2×2=﹣4.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn)、等邊三角形的性質(zhì)、解直角三角函數(shù)等知識(shí),難度適中.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)y=﹣x2﹣x+3;(2)①點(diǎn)D坐標(biāo)為(﹣,0);②點(diǎn)M(,0).【解析】
(1)應(yīng)用待定系數(shù)法問(wèn)題可解;(2)①通過(guò)分類(lèi)討論研究△APQ和△CDO全等②由已知求點(diǎn)D坐標(biāo),證明DN∥BC,從而得到DN為中線,問(wèn)題可解.【詳解】(1)將點(diǎn)(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得,解得:,∴拋物線解析式為:y=-x2-x+3;(2)①存在點(diǎn)D,使得△APQ和△CDO全等,當(dāng)D在線段OA上,∠QAP=∠DCO,AP=OC=3時(shí),△APQ和△CDO全等,∴tan∠QAP=tan∠DCO,,∴,∴OD=,∴點(diǎn)D坐標(biāo)為(-,0).由對(duì)稱(chēng)性,當(dāng)點(diǎn)D坐標(biāo)為(,0)時(shí),由點(diǎn)B坐標(biāo)為(4,0),此時(shí)點(diǎn)D(,0)在線段OB上滿(mǎn)足條件.②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB,∴BD=BC=5,∴OD=BD-OB=1,則點(diǎn)D坐標(biāo)為(-1,0)且AD=BD=5,連DN,CM,則DN=DM,∠NDC=∠MDC,∴∠NDC=∠DCB,∴DN∥BC,∴,則點(diǎn)N為AC中點(diǎn).∴DN時(shí)△ABC的中位線,∵DN=DM=BC=,∴OM=DM-OD=∴點(diǎn)M(,0)【點(diǎn)睛】本題是二次函數(shù)綜合題,考查了二次函數(shù)待定系數(shù)法、三角形全等的判定、銳角三角形函數(shù)的相關(guān)知識(shí).解答時(shí),注意數(shù)形結(jié)合.20、(1),y=2x﹣1;(2).【解析】
(1)利用待定系數(shù)法即可解答;
(2)作MD⊥y軸,交y軸于點(diǎn)D,設(shè)點(diǎn)M的坐標(biāo)為(x,2x-1),根據(jù)MB=MC,得到CD=BD,再列方程可求得x的值,得到點(diǎn)M的坐標(biāo)【詳解】解:(1)把點(diǎn)A(4,3)代入函數(shù)得:a=3×4=12,∴.∵A(4,3)∴OA=1,∵OA=OB,∴OB=1,∴點(diǎn)B的坐標(biāo)為(0,﹣1)把B(0,﹣1),A(4,3)代入y=kx+b得:∴y=2x﹣1.(2)作MD⊥y軸于點(diǎn)D.∵點(diǎn)M在一次函數(shù)y=2x﹣1上,∴設(shè)點(diǎn)M的坐標(biāo)為(x,2x﹣1)則點(diǎn)D(0,2x-1)∵M(jìn)B=MC,∴CD=BD∴8-(2x-1)=2x-1+1解得:x=∴2x﹣1=,∴點(diǎn)M的坐標(biāo)為.【點(diǎn)睛】本題考查了一次函數(shù)與反比例函數(shù)的交點(diǎn),解決本題的關(guān)鍵是利用待定系數(shù)法求解析式.21、【解析】分析:化簡(jiǎn)絕對(duì)值、0次冪和負(fù)指數(shù)冪,代入30°角的三角函數(shù)值,然后按照有理數(shù)的運(yùn)算順序和法則進(jìn)行計(jì)算即可.詳解:原式=+1﹣2×+=.點(diǎn)睛:本題考查了實(shí)數(shù)的運(yùn)算,用到的知識(shí)點(diǎn)主要有絕對(duì)值、零指數(shù)冪和負(fù)指數(shù)冪,以及特殊角的三角函數(shù)值,熟記相關(guān)法則和性質(zhì)是解決此題的關(guān)鍵.22、(1)50,30%;(2)不能,理由見(jiàn)解析;(3)P=【解析】【分析】(1)由直方圖可知59.5~69.5分?jǐn)?shù)段有5人,由扇形統(tǒng)計(jì)圖可知這一分?jǐn)?shù)段人占10%,據(jù)此可得選手總數(shù),然后求出89.5~99.5這一分?jǐn)?shù)段所占的百分比,用1減去其他分?jǐn)?shù)段的百分比即可得到分?jǐn)?shù)段69.5~79.5所占的百分比;(2)觀察可知79.5~99.5這一分?jǐn)?shù)段的人數(shù)占了60%,據(jù)此即可判斷出該選手是否獲獎(jiǎng);(3)畫(huà)樹(shù)狀圖得到所有可能的情況,再找出符合條件的情況后,用概率公式進(jìn)行求解即可.【詳解】(1)本次比賽選手共有(2+3)÷10%=50(人),“89.5~99.5”這一組人數(shù)占百分比為:(8+4)÷50×100%=24%,所以“69.5~79.5”這一組人數(shù)占總?cè)藬?shù)的百分比為:1-10%-24%-36%=30%,故答案為50,30%;(2)不能;由統(tǒng)計(jì)圖知,79.5~89.5和89.5~99.5兩組占參賽選手60%,而78<79.5,所以他不能獲獎(jiǎng);(3)由題意得樹(shù)狀圖如下由樹(shù)狀圖知,共有12種等可能結(jié)果,其中恰好選中1男1女的共有8種結(jié)果,故P==.【點(diǎn)睛】本題考查了直方圖、扇形圖、概率,結(jié)合統(tǒng)計(jì)圖找到必要信息進(jìn)行解題是關(guān)鍵.23、(3)證明見(jiàn)解析(3)3或﹣3【解析】
(3)根據(jù)一元二次方程的定義得k≠2,再計(jì)算判別式得到△=(3k-3)3,然后根據(jù)非負(fù)數(shù)的性質(zhì),即k的取值得到△>2,則可根據(jù)判別式的意義得到結(jié)論;(3)根據(jù)求根公式求出方程的根,方程的兩個(gè)實(shí)數(shù)根都是整數(shù),求出k的值.【詳解】證明:(3)△=[﹣(4k+3)]3﹣4k(3k+3)=(3k﹣3)3.∵k為整數(shù),∴(3k﹣3)3>2,即△>2.∴方程有兩個(gè)不相等的實(shí)數(shù)根.(3)解:∵方程kx3﹣(4k+3)x+3k+3=2為一元二次方程,∴k≠2.∵kx3﹣(4k+3)x+3k+3=2,即[kx﹣(k+3)](x﹣3)=2,∴x3=3,.∵方程的兩個(gè)實(shí)數(shù)根都是整數(shù),且k為整數(shù),∴k=3或﹣3.【點(diǎn)睛】本題主要考查了根的判別式的知識(shí),熟知一元二次方程的根與△的關(guān)系是解答此題的關(guān)鍵.24、(1)=;(2)結(jié)論:AC2=AG?AH.理由見(jiàn)解析;(3)①△AGH的面積不變.②m的值為或2或8﹣4..【解析】
(1)證明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)結(jié)論:AC2=AG?AH.只要證明△AHC∽△ACG即可解決問(wèn)題;(3)①△AGH的面積不變.理由三角形的面積公式計(jì)算即可;②分三種情形分別求解即可解決問(wèn)題.【詳解】(1)∵四邊形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,∴AC=,∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,∴∠AHC=∠ACG.故答案為=.(2)結(jié)論:AC2=AG?AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,∴△AHC∽△ACG,∴,∴AC2=AG?AH.(3)①△AGH的面積不變.理由:∵S△AGH=?AH?AG=AC2=×(4)2=1.∴△AGH的面積為1.②如圖1中,當(dāng)GC=GH時(shí),易證△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴,∴AE=AB=.如圖2中,當(dāng)CH=HG時(shí),易證AH=BC=4,∵BC∥AH,∴=1,∴AE=BE=2.如圖3中,當(dāng)CG=CH時(shí),易證∠ECB=∠DCF=22.3.在BC上取一點(diǎn)M,使得BM=BE,∴∠BME=∠BEM=43°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.3°,∴CM=EM,設(shè)BM=BE=m,則CM=EMm,∴m+m=4,∴m=4(﹣1),∴AE=4﹣4(﹣1)=8﹣4,綜上所述,滿(mǎn)足條件的m的值為或2或8﹣4.【點(diǎn)睛】本題屬于四邊形綜合題,考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題.25、(1)甲種材料每千克25元,乙種材料每千克35元.(2)共有四種方案;(3)生產(chǎn)A產(chǎn)品21件,B產(chǎn)品39件成本最低.【解析】試題分析:(1)、首先設(shè)甲種材料每千克x元,乙種材料每千克y元,根據(jù)題意列出二元一次方程組得出答案;(2)、設(shè)生產(chǎn)B產(chǎn)品a件,則A產(chǎn)品(60-a)件,根據(jù)題意列出不等式組,然后求出a的取值范圍,得出方案;得出生產(chǎn)成本w與a的函數(shù)關(guān)系式,根據(jù)函數(shù)的增減性得出答案.試題解析:(1)設(shè)甲種材料每千克x元,乙種材料每千克y元,依題意得:x+y=602y+3y=155解得:答:甲種材料每千克25元,乙種材料每千克35元.(2)生產(chǎn)B產(chǎn)品a件,生產(chǎn)A
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 金融行業(yè)前臺(tái)咨詢(xún)工作總結(jié)
- 營(yíng)銷(xiāo)行業(yè)創(chuàng)新實(shí)踐總結(jié)
- 無(wú)人駕駛技術(shù)的前景展望
- IT行業(yè)銷(xiāo)售員工作總結(jié)
- 電力行業(yè)可再生能源發(fā)展顧問(wèn)工作總結(jié)
- 書(shū)店美容院保安工作經(jīng)驗(yàn)
- 金融行業(yè)中理財(cái)咨詢(xún)顧問(wèn)的工作要求
- 旅游行業(yè)導(dǎo)游培訓(xùn)總結(jié)
- 【八年級(jí)下冊(cè)地理湘教版】專(zhuān)項(xiàng)04 時(shí)政地理
- 2024年稅務(wù)師題庫(kù)附參考答案【輕巧奪冠】
- 衛(wèi)生化學(xué)期末考試習(xí)題2
- 瓣周漏護(hù)理查房
- 歷代反腐完整
- 《現(xiàn)代控制理論》(劉豹-唐萬(wàn)生)
- 廣東省佛山市南海區(qū)三水區(qū)2022-2023學(xué)年七年級(jí)上學(xué)期期末歷史試題(無(wú)答案)
- 重視心血管-腎臟-代謝綜合征(CKM)
- 譯林版小學(xué)英語(yǔ)六年級(jí)上冊(cè)英文作文范文
- 學(xué)術(shù)英語(yǔ)(理工類(lèi))
- 淺談“五育并舉”背景下中小學(xué)勞動(dòng)教育的探索與研究 論文
- 大樹(shù)的故事 單元作業(yè)設(shè)計(jì)
- 六年級(jí)道德與法治學(xué)情分析
評(píng)論
0/150
提交評(píng)論