20182019學(xué)年八年級(jí)數(shù)學(xué)下冊(cè)的10解題技巧專題特殊平行四邊形中的解題方法測(cè)試題新人教版_第1頁
20182019學(xué)年八年級(jí)數(shù)學(xué)下冊(cè)的10解題技巧專題特殊平行四邊形中的解題方法測(cè)試題新人教版_第2頁
20182019學(xué)年八年級(jí)數(shù)學(xué)下冊(cè)的10解題技巧專題特殊平行四邊形中的解題方法測(cè)試題新人教版_第3頁
20182019學(xué)年八年級(jí)數(shù)學(xué)下冊(cè)的10解題技巧專題特殊平行四邊形中的解題方法測(cè)試題新人教版_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2018_2019學(xué)年八年級(jí)數(shù)學(xué)下冊(cè)的10解題技巧專題特別平行四邊形中的解題方法測(cè)試題(新版)新人教版2018_2019學(xué)年八年級(jí)數(shù)學(xué)下冊(cè)的10解題技巧專題特別平行四邊形中的解題方法測(cè)試題(新版)新人教版/2018_2019學(xué)年八年級(jí)數(shù)學(xué)下冊(cè)的10解題技巧專題特別平行四邊形中的解題方法測(cè)試題(新版)新人教版解題技巧專題:特別平行四邊形中的解題方法◆種類一特別四邊形中求最值、定值問題一、利用對(duì)稱性求最值【方法10】1.(2017·青山區(qū)期中)如圖,四邊形ABCD是菱形,AC=8,DB=6,P,Q分別是AC,AD上的動(dòng)點(diǎn),連接DP,PQ,則DP+PQ的最小值為________.第1題圖第2題圖2.(2017·安順中考)如圖,正方形ABCD的邊長為6,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線AC上有一點(diǎn)P,使PD+PE的和最小,則這個(gè)最小值為________.二、利用面積法求定值3.如圖,在矩形ABCD中,點(diǎn)P是線段BC上一動(dòng)點(diǎn),且PE⊥AC,PF⊥BD,AB=6,BC8,則PE+PF的值為________.【變式題】矩形兩條垂線段之和→菱形兩條垂線段之和→正方形兩條垂線段之和(1)(2017·眉山期末)如圖,菱形ABCD的周長為40,面積為25,P是對(duì)角線BD上一點(diǎn),分別作P點(diǎn)到直線AB、AD的垂線段PE、PF,則PE+PF等于________.變式題(1)圖變式題(2)圖如圖,正方形ABCD的邊長為1,E為對(duì)角線BD上一點(diǎn)且BE=BC,點(diǎn)P為線段CE上一動(dòng)點(diǎn),且PM⊥BE于M,PN⊥BC于N,則PM+PN的值為________.◆種類二正方形中利用旋轉(zhuǎn)性解題4.如圖,在四邊形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四邊形ABCD的面積是18,則DP的長是__________.5.如圖,在正方形ABCD中,點(diǎn)E,F(xiàn)分別在BC,CD上,∠EAF=45°.求證:S△AEF=S△ABE1S△ADF.6.如圖,在正方形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,P為正方形ABCD外一點(diǎn),且BP⊥CP,連接OP.求證:BP+CP=2OP.參照答案與剖析21.24剖析:如圖,過點(diǎn)Q作⊥交于點(diǎn),則=.∴+=+.5QEACABEPQPEDPPQDPPE當(dāng)點(diǎn)D,P,E三點(diǎn)共線的時(shí)候DP+PQ=DP+PE=DE最小,且DE即為所求.當(dāng)DE⊥AB時(shí),DE最?。咚倪呅?122菱形ABCD=1·=·,∴1×8×6=5·,∴=24.∴+的最小值為24.2ACBDABDE2DEDE5DPPQ52.6剖析:如圖,設(shè)BE與AC交于點(diǎn)P,連接BD.∵點(diǎn)B與D關(guān)于AC對(duì)稱,∴PD=PB,∴+=+=,即P為與的交點(diǎn)時(shí),+最小,為BE的長度.∵正方形PDPEPBPEBEACBEPDPEABCD的邊長為6,∴AB=6.又∵△ABE是等邊三角形,∴BE=AB=6.故所求最小值為6.故答案為6.24剖析:∵四邊形ABCD為矩形,∴∠ABC=90°.∵AB=6,BC=8,∴AC=10,51,∴OB·PFOC·PE5·PF∴OB=OC=2AC=5.如圖,連接OP,∵S△+S△=S△2+2=S△,∴2OBPOCPOBCOBC5·PE∵△OBC=1矩形ABCD=11,∴5·PF5·PE++=△OBC.4S·=×6×8=122+=12,∴2SS4ABBC42PE24PF=5.【變式題】(1)5剖析:∵菱形的周長為40,面積為25,∴==10,△ABD2ABCDABADS25△ABD△ABP△ADP12552222(2)2,過點(diǎn)E作⊥于BE·PMBC·PN剖析:連接.∵△BPE+△BPC=△BEC,∴+2BPEHBCHSSS223=BC·EH又∵=,∴PMPNEH+=.∵△為等腰直角三角形,且BE.+=,即2BEBC222PMPNEHBEH22BC=1,∴EH=2,∴PM+PN=EH=2.4.325.證明:延長CB到點(diǎn)H,使得HB=DF,連接AH.∵四邊形ABCD是正方形,∴∠ABH=∠D=90°,AB=AD.∴△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后能和△ABH重合,∴AH=AF,∠BAH=∠DAF.∵∠HAE=∠HAB+∠BAE=∠DAF+∠BAE=90°-∠EAF=90°-45°=45°,∴∠HAE=∠EAF=45°.又∵AE=AE,∴△AEF與△AEH關(guān)于直線AE對(duì)稱,∴S△AEF=S△AEH=S△ABES△ABH=S△ABE+S△ADF.6.證明:∵四邊形ABCD是正方形,∴OB=OC,∠BOC=90°.將△OCP順時(shí)針旋轉(zhuǎn)90°至△OBE(以下列圖),∴OE=OP,BE=CP,∠OBE=∠OCP,∠BOE=∠COP.∵BP⊥CP,∴∠BPC90°.∵∠BOC+∠OBP+∠BPC+∠OCP=360°,∴∠OBP+∠OCP=180°,∴∠OBP+∠OBE180°,∴E,B,P在同素來線上.∵∠POC+∠POB=∠BO

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論