版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年安徽省炳輝中學(xué)高三下學(xué)期第六調(diào)考試數(shù)學(xué)試題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù)是純虛數(shù),其中是實(shí)數(shù),則等于()A. B. C. D.2.已知半徑為2的球內(nèi)有一個(gè)內(nèi)接圓柱,若圓柱的高為2,則球的體積與圓柱的體積的比為()A. B. C. D.3.在一個(gè)數(shù)列中,如果,都有(為常數(shù)),那么這個(gè)數(shù)列叫做等積數(shù)列,叫做這個(gè)數(shù)列的公積.已知數(shù)列是等積數(shù)列,且,,公積為,則()A. B. C. D.4.“哥德巴赫猜想”是近代三大數(shù)學(xué)難題之一,其內(nèi)容是:一個(gè)大于2的偶數(shù)都可以寫成兩個(gè)質(zhì)數(shù)(素?cái)?shù))之和,也就是我們所謂的“1+1”問題.它是1742年由數(shù)學(xué)家哥德巴赫提出的,我國數(shù)學(xué)家潘承洞、王元、陳景潤等在哥德巴赫猜想的證明中做出相當(dāng)好的成績.若將6拆成兩個(gè)正整數(shù)的和,則拆成的和式中,加數(shù)全部為質(zhì)數(shù)的概率為()A. B. C. D.5.已知與分別為函數(shù)與函數(shù)的圖象上一點(diǎn),則線段的最小值為()A. B. C. D.66.已知命題p:直線a∥b,且b?平面α,則a∥α;命題q:直線l⊥平面α,任意直線m?α,則l⊥m.下列命題為真命題的是()A.p∧q B.p∨(非q) C.(非p)∧q D.p∧(非q)7.已知集合,,則A. B. C. D.8.已知函數(shù)是定義域?yàn)榈呐己瘮?shù),且滿足,當(dāng)時(shí),,則函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù)為()A.9 B.10 C.18 D.209.若復(fù)數(shù)(是虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知函數(shù).若存在實(shí)數(shù),且,使得,則實(shí)數(shù)a的取值范圍為()A. B. C. D.11.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽數(shù),黑點(diǎn)為陰數(shù).若從這10個(gè)數(shù)中任取3個(gè)數(shù),則這3個(gè)數(shù)中至少有2個(gè)陽數(shù)且能構(gòu)成等差數(shù)列的概率為()A. B. C. D.12.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,則______.14.某四棱錐的三視圖如圖所示,那么此四棱錐的體積為______.15.四邊形中,,,,,則的最小值是______.16.如圖所示,平面BCC1B1⊥平面ABC,ABC=120,四邊形BCC1B1為正方形,且AB=BC=2,則異面直線BC1與AC所成角的余弦值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)的內(nèi)角的對邊分別為,若(1)求角的大?。?)若,求的周長18.(12分)如圖,在直角梯形中,,,,為的中點(diǎn),沿將折起,使得點(diǎn)到點(diǎn)位置,且,為的中點(diǎn),是上的動(dòng)點(diǎn)(與點(diǎn),不重合).(Ⅰ)證明:平面平面垂直;(Ⅱ)是否存在點(diǎn),使得二面角的余弦值?若存在,確定點(diǎn)位置;若不存在,說明理由.19.(12分)已知函數(shù)為實(shí)數(shù))的圖像在點(diǎn)處的切線方程為.(1)求實(shí)數(shù)的值及函數(shù)的單調(diào)區(qū)間;(2)設(shè)函數(shù),證明時(shí),.20.(12分)某企業(yè)原有甲、乙兩條生產(chǎn)線,為了分析兩條生產(chǎn)線的效果,先從兩條生產(chǎn)線生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測一項(xiàng)質(zhì)量指標(biāo)值.該項(xiàng)指標(biāo)值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.乙生產(chǎn)線樣本的頻數(shù)分布表質(zhì)量指標(biāo)合計(jì)頻數(shù)2184814162100(1)根據(jù)甲生產(chǎn)線樣本的頻率分布直方圖,以從樣本中任意抽取一件產(chǎn)品且為合格品的頻率近似代替從甲生產(chǎn)線生產(chǎn)的產(chǎn)品中任意抽取一件產(chǎn)品且為合格品的概率,估計(jì)從甲生產(chǎn)線生產(chǎn)的產(chǎn)品中任取5件恰有2件為合格品的概率;(2)現(xiàn)在該企業(yè)為提高合格率欲只保留其中一條生產(chǎn)線,根據(jù)上述圖表所提供的數(shù)據(jù),完成下面的列聯(lián)表,并判斷是否有90%把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與生產(chǎn)線有關(guān)?若有90%把握,請從合格率的角度分析保留哪條生產(chǎn)線較好?甲生產(chǎn)線乙生產(chǎn)線合計(jì)合格品不合格品合計(jì)附:,.0.1500.1000.0500.0250.0100.0052.0722.7063.8415.0246.6357.87921.(12分)2018年反映社會(huì)現(xiàn)實(shí)的電影《我不是藥神》引起了很大的轟動(dòng),治療特種病的創(chuàng)新藥研發(fā)成了當(dāng)務(wù)之急.為此,某藥企加大了研發(fā)投入,市場上治療一類慢性病的特效藥品的研發(fā)費(fèi)用(百萬元)和銷量(萬盒)的統(tǒng)計(jì)數(shù)據(jù)如下:研發(fā)費(fèi)用(百萬元)2361013151821銷量(萬盒)1122.53.53.54.56(1)求與的相關(guān)系數(shù)精確到0.01,并判斷與的關(guān)系是否可用線性回歸方程模型擬合?(規(guī)定:時(shí),可用線性回歸方程模型擬合);(2)該藥企準(zhǔn)備生產(chǎn)藥品的三類不同的劑型,,,并對其進(jìn)行兩次檢測,當(dāng)?shù)谝淮螜z測合格后,才能進(jìn)行第二次檢測.第一次檢測時(shí),三類劑型,,合格的概率分別為,,,第二次檢測時(shí),三類劑型,,合格的概率分別為,,.兩次檢測過程相互獨(dú)立,設(shè)經(jīng)過兩次檢測后,,三類劑型合格的種類數(shù)為,求的數(shù)學(xué)期望.附:(1)相關(guān)系數(shù)(2),,,.22.(10分)在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對某種產(chǎn)品的研發(fā)投入.為了對新研發(fā)的產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格試銷,得到一組檢測數(shù)據(jù)如表所示:試銷價(jià)格(元)產(chǎn)品銷量(件)已知變量且有線性負(fù)相關(guān)關(guān)系,現(xiàn)有甲、乙、丙三位同學(xué)通過計(jì)算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學(xué)的計(jì)算結(jié)果是正確的.(1)試判斷誰的計(jì)算結(jié)果正確?(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過,則稱該檢測數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測數(shù)據(jù)中隨機(jī)抽取個(gè),求“理想數(shù)據(jù)”的個(gè)數(shù)的分布列和數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
對復(fù)數(shù)進(jìn)行化簡,由于為純虛數(shù),則化簡后的復(fù)數(shù)形式中,實(shí)部為0,得到的值,從而得到復(fù)數(shù).【詳解】因?yàn)闉榧兲摂?shù),所以,得所以.故選A項(xiàng)【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,純虛數(shù)的概念,屬于簡單題.2、D【解析】
分別求出球和圓柱的體積,然后可得比值.【詳解】設(shè)圓柱的底面圓半徑為,則,所以圓柱的體積.又球的體積,所以球的體積與圓柱的體積的比,故選D.【點(diǎn)睛】本題主要考查幾何體的體積求解,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).3、B【解析】
計(jì)算出的值,推導(dǎo)出,再由,結(jié)合數(shù)列的周期性可求得數(shù)列的前項(xiàng)和.【詳解】由題意可知,則對任意的,,則,,由,得,,,,因此,.故選:B.【點(diǎn)睛】本題考查數(shù)列求和,考查了數(shù)列的新定義,推導(dǎo)出數(shù)列的周期性是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.4、A【解析】
列出所有可以表示成和為6的正整數(shù)式子,找到加數(shù)全部為質(zhì)數(shù)的只有,利用古典概型求解即可.【詳解】6拆成兩個(gè)正整數(shù)的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加數(shù)全為質(zhì)數(shù)的有(3,3),根據(jù)古典概型知,所求概率為.故選:A.【點(diǎn)睛】本題主要考查了古典概型,基本事件,屬于容易題.5、C【解析】
利用導(dǎo)數(shù)法和兩直線平行性質(zhì),將線段的最小值轉(zhuǎn)化成切點(diǎn)到直線距離.【詳解】已知與分別為函數(shù)與函數(shù)的圖象上一點(diǎn),可知拋物線存在某條切線與直線平行,則,設(shè)拋物線的切點(diǎn)為,則由可得,,所以切點(diǎn)為,則切點(diǎn)到直線的距離為線段的最小值,則.故選:C.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用,以及點(diǎn)到直線的距離公式的應(yīng)用,考查轉(zhuǎn)化思想和計(jì)算能力.6、C【解析】
首先判斷出為假命題、為真命題,然后結(jié)合含有簡單邏輯聯(lián)結(jié)詞命題的真假性,判斷出正確選項(xiàng).【詳解】根據(jù)線面平行的判定,我們易得命題若直線,直線平面,則直線平面或直線在平面內(nèi),命題為假命題;根據(jù)線面垂直的定義,我們易得命題若直線平面,則若直線與平面內(nèi)的任意直線都垂直,命題為真命題.故:A命題“”為假命題;B命題“”為假命題;C命題“”為真命題;D命題“”為假命題.故選:C.【點(diǎn)睛】本小題主要考查線面平行與垂直有關(guān)命題真假性的判斷,考查含有簡單邏輯聯(lián)結(jié)詞的命題的真假性判斷,屬于基礎(chǔ)題.7、C【解析】分析:根據(jù)集合可直接求解.詳解:,,故選C點(diǎn)睛:集合題也是每年高考的必考內(nèi)容,一般以客觀題形式出現(xiàn),一般解決此類問題時(shí)要先將參與運(yùn)算的集合化為最簡形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續(xù)型”集合則可借助不等式進(jìn)行運(yùn)算.8、B【解析】
由已知可得函數(shù)f(x)的周期與對稱軸,函數(shù)F(x)=f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)等價(jià)于函數(shù)f(x)與g(x)圖象在上交點(diǎn)的個(gè)數(shù),作出函數(shù)f(x)與g(x)的圖象如圖,數(shù)形結(jié)合即可得到答案.【詳解】函數(shù)F(x)=f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)等價(jià)于函數(shù)f(x)與g(x)圖象在上交點(diǎn)的個(gè)數(shù),由f(x)=f(2﹣x),得函數(shù)f(x)圖象關(guān)于x=1對稱,∵f(x)為偶函數(shù),取x=x+2,可得f(x+2)=f(﹣x)=f(x),得函數(shù)周期為2.又∵當(dāng)x∈[0,1]時(shí),f(x)=x,且f(x)為偶函數(shù),∴當(dāng)x∈[﹣1,0]時(shí),f(x)=﹣x,g(x),作出函數(shù)f(x)與g(x)的圖象如圖:由圖可知,兩函數(shù)圖象共10個(gè)交點(diǎn),即函數(shù)F(x)=f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)為10.故選:B.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)與方程根的關(guān)系,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,屬于中檔題.9、A【解析】
將整理成的形式,得到復(fù)數(shù)所對應(yīng)的的點(diǎn),從而可選出所在象限.【詳解】解:,所以所對應(yīng)的點(diǎn)為在第一象限.故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的乘法運(yùn)算,考查了復(fù)數(shù)對應(yīng)的坐標(biāo).易錯(cuò)點(diǎn)是誤把當(dāng)成進(jìn)行計(jì)算.10、D【解析】
首先對函數(shù)求導(dǎo),利用導(dǎo)數(shù)的符號(hào)分析函數(shù)的單調(diào)性和函數(shù)的極值,根據(jù)題意,列出參數(shù)所滿足的不等關(guān)系,求得結(jié)果.【詳解】,令,得,.其單調(diào)性及極值情況如下:x0+0_0+極大值極小值若存在,使得,則(如圖1)或(如圖2).(圖1)(圖2)于是可得,故選:D.【點(diǎn)睛】該題考查的是有關(guān)根據(jù)函數(shù)值的關(guān)系求參數(shù)的取值范圍的問題,涉及到的知識(shí)點(diǎn)有利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,畫出圖象數(shù)形結(jié)合,屬于較難題目.11、C【解析】
先根據(jù)組合數(shù)計(jì)算出所有的情況數(shù),再根據(jù)“3個(gè)數(shù)中至少有2個(gè)陽數(shù)且能構(gòu)成等差數(shù)列”列舉得到滿足條件的情況,由此可求解出對應(yīng)的概率.【詳解】所有的情況數(shù)有:種,3個(gè)數(shù)中至少有2個(gè)陽數(shù)且能構(gòu)成等差數(shù)列的情況有:,共種,所以目標(biāo)事件的概率.故選:C.【點(diǎn)睛】本題考查概率與等差數(shù)列的綜合,涉及到背景文化知識(shí),難度一般.求解該類問題可通過古典概型的概率求解方法進(jìn)行分析;當(dāng)情況數(shù)較多時(shí),可考慮用排列數(shù)、組合數(shù)去計(jì)算.12、D【解析】循環(huán)依次為直至結(jié)束循環(huán),輸出,選D.點(diǎn)睛:算法與流程圖的考查,側(cè)重于對流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點(diǎn)條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學(xué)問題,是求和還是求項(xiàng).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出,然后由模的平方轉(zhuǎn)化為向量的平方,利用數(shù)量積的運(yùn)算計(jì)算.【詳解】由題意得,.,.,,.故答案為:.【點(diǎn)睛】本題考查求向量的模,掌握數(shù)量積的定義與運(yùn)算律是解題基礎(chǔ).本題關(guān)鍵是用數(shù)量積的定義把模的運(yùn)算轉(zhuǎn)化為數(shù)量積的運(yùn)算.14、【解析】
利用三視圖判斷幾何體的形狀,然后通過三視圖的數(shù)據(jù)求解幾何體的體積.【詳解】如圖:此四棱錐的高為,底面是長為,寬為2的矩形,所以體積.所以本題答案為.【點(diǎn)睛】本題考查幾何體與三視圖的對應(yīng)關(guān)系,幾何體體積的求法,考查空間想象能力與計(jì)算能力.解決本類題目的關(guān)鍵是準(zhǔn)確理解幾何體的定義,真正把握幾何體的結(jié)構(gòu)特征,可以根據(jù)條件構(gòu)建幾何模型,在幾何模型中進(jìn)行判斷.15、【解析】
在中利用正弦定理得出,進(jìn)而可知,當(dāng)時(shí),取最小值,進(jìn)而計(jì)算出結(jié)果.【詳解】,如圖,在中,由正弦定理可得,即,故當(dāng)時(shí),取到最小值為.故答案為:.【點(diǎn)睛】本題考查解三角形,同時(shí)也考查了常見的三角函數(shù)值,考查邏輯推理能力與計(jì)算能力,屬于中檔題.16、【解析】
將平移到和相交的位置,解三角形求得線線角的余弦值.【詳解】過作,過作,畫出圖像如下圖所示,由于四邊形是平行四邊形,故,所以是所求線線角或其補(bǔ)角.在三角形中,,故.【點(diǎn)睛】本小題主要考查空間兩條直線所成角的余弦值的計(jì)算,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)11【解析】
(1)利用二倍角公式將式子化簡成,再利用兩角和與差的余弦公式即可求解.(2)利用余弦定理可得,再將平方,利用向量數(shù)量積可得,從而可求周長.【詳解】由題解得,所以由余弦定理,,再由解得:所以故的周長為【點(diǎn)睛】本題主要考查了余弦定理解三角形、兩角和與差的余弦公式、需熟記公式,屬于基礎(chǔ)題.18、(Ⅰ)見解析(Ⅱ)存在,此時(shí)為的中點(diǎn).【解析】
(Ⅰ)證明平面,得到平面平面,故平面平面,平面,得到答案.(Ⅱ)假設(shè)存在點(diǎn)滿足題意,過作于,平面,過作于,連接,則,過作于,連接,是二面角的平面角,設(shè),,計(jì)算得到答案.【詳解】(Ⅰ)∵,,,∴平面.又平面,∴平面平面,而平面,,∴平面平面,由,知,可知平面,又平面,∴平面平面.(Ⅱ)假設(shè)存在點(diǎn)滿足題意,過作于,由知,易證平面,所以平面,過作于,連接,則(三垂線定理),即是二面角的平面角,不妨設(shè),則,在中,設(shè)(),由得,即,得,∴,依題意知,即,解得,此時(shí)為的中點(diǎn).綜上知,存在點(diǎn),使得二面角的余弦值,此時(shí)為的中點(diǎn).【點(diǎn)睛】本題考查了面面垂直,根據(jù)二面角確定點(diǎn)的位置,意在考查學(xué)生的空間想象能力和計(jì)算能力,也可以建立空間直角坐標(biāo)系解得答案.19、(1);函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)詳見解析.【解析】
試題分析:(1)由題得,根據(jù)曲線在點(diǎn)處的切線方程,列出方程組,求得的值,得到的解析式,即可求解函數(shù)的單調(diào)區(qū)間;(2)由(1)得根據(jù)由,整理得,設(shè),轉(zhuǎn)化為函數(shù)的最值,即可作出證明.試題解析:(1)由題得,函數(shù)的定義域?yàn)椋?,因?yàn)榍€在點(diǎn)處的切線方程為,所以解得.令,得,當(dāng)時(shí),,在區(qū)間內(nèi)單調(diào)遞減;當(dāng)時(shí),,在區(qū)間內(nèi)單調(diào)遞增.所以函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)由(1)得,.由,得,即.要證,需證,即證,設(shè),則要證,等價(jià)于證:.令,則,∴在區(qū)間內(nèi)單調(diào)遞增,,即,故.20、(1)0.0081(2)見解析,保留乙生產(chǎn)線較好.【解析】
(1)先求出任取一件產(chǎn)品為合格品的頻率,“從甲生產(chǎn)線生產(chǎn)的產(chǎn)品中任取5件,恰有2件為合格品”就相當(dāng)于進(jìn)行5次獨(dú)立重復(fù)試驗(yàn),恰好發(fā)生2次的概率用二項(xiàng)分布概率即可解決.(2)獨(dú)立性檢驗(yàn)算出的觀測值即可判斷.【詳解】(1)根據(jù)甲生產(chǎn)線樣本的頻率分布直方圖,樣本中任取一件產(chǎn)品為合格品的頻率為:.設(shè)“從甲生產(chǎn)線生產(chǎn)的產(chǎn)品中任取一件且為合格品”為事件,事件發(fā)生的概率為,則由樣本可估計(jì).那么“從甲生產(chǎn)線生產(chǎn)的產(chǎn)品中任取5件,恰有2件為合格品”就相當(dāng)于進(jìn)行5次獨(dú)立重復(fù)試驗(yàn),事件恰好發(fā)生2次,其概率為:.(2)列聯(lián)表:甲生產(chǎn)線乙生產(chǎn)線合
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智慧城市承建合同標(biāo)的城市信息化建設(shè)4篇
- 2025年京都議定書碳排放權(quán)減排項(xiàng)目融資與ESG審計(jì)合同3篇
- 2025年度生態(tài)修復(fù)工程純勞務(wù)分包合同范本4篇
- 2024智能交通工具研發(fā)合同
- 2024藝團(tuán)藝人團(tuán)體管理簽約合同3篇
- 2025年度新能源打井工程合作框架協(xié)議3篇
- 如何編寫仿古磚項(xiàng)目可行性研究報(bào)告
- 2025年洗滌設(shè)備品牌授權(quán)與合作合同協(xié)議書范本3篇
- 2025年度環(huán)保工程設(shè)計(jì)個(gè)人勞務(wù)承包合同4篇
- 2025年新能源汽車租賃企業(yè)間聯(lián)營合同3篇
- 巖土工程勘察課件0巖土工程勘察
- 《腎上腺腫瘤》課件
- 2024-2030年中國典當(dāng)行業(yè)發(fā)展前景預(yù)測及融資策略分析報(bào)告
- 《乘用車越野性能主觀評(píng)價(jià)方法》
- 幼師個(gè)人成長發(fā)展規(guī)劃
- 2024-2025學(xué)年北師大版高二上學(xué)期期末英語試題及解答參考
- 動(dòng)物醫(yī)學(xué)類專業(yè)生涯發(fā)展展示
- 批發(fā)面包采購合同范本
- 乘風(fēng)化麟 蛇我其誰 2025XX集團(tuán)年終總結(jié)暨頒獎(jiǎng)盛典
- 2024年大數(shù)據(jù)分析公司與中國政府合作協(xié)議
- 一年級(jí)數(shù)學(xué)(上)計(jì)算題專項(xiàng)練習(xí)匯編
評(píng)論
0/150
提交評(píng)論