版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023屆廣東省廣州市荔灣、海珠部分學校高三統(tǒng)一測試(一)數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某學校組織學生參加英語測試,成績的頻率分布直方圖如圖,數據的分組依次為,若低于60分的人數是18人,則該班的學生人數是()A.45 B.50 C.55 D.602.已知等差數列的前項和為,若,則等差數列公差()A.2 B. C.3 D.43.已知的面積是,,,則()A.5 B.或1 C.5或1 D.4.已知集合,,若,則()A.4 B.-4 C.8 D.-85.大衍數列,米源于我國古代文獻《乾坤譜》中對易傳“大衍之數五十”的推論,主要用于解釋我國傳統(tǒng)文化中的太極衍生原理,數列中的每一項,都代表太極衍生過程中,曾經經歷過的兩儀數量總和.已知該數列前10項是0,2,4,8,12,18,24,32,40,50,…,則大衍數列中奇數項的通項公式為()A. B. C. D.6.已知函數,則的值等于()A.2018 B.1009 C.1010 D.20207.是虛數單位,則()A.1 B.2 C. D.8.已知等比數列的前項和為,且滿足,則的值是()A. B. C. D.9.已知公差不為0的等差數列的前項的和為,,且成等比數列,則()A.56 B.72 C.88 D.4010.設函數若關于的方程有四個實數解,其中,則的取值范圍是()A. B. C. D.11.為實現國民經濟新“三步走”的發(fā)展戰(zhàn)略目標,國家加大了扶貧攻堅的力度.某地區(qū)在2015年以前的年均脫貧率(脫離貧困的戶數占當年貧困戶總數的比)為.2015年開始,全面實施“精準扶貧”政策后,扶貧效果明顯提高,其中2019年度實施的扶貧項目,各項目參加戶數占比(參加該項目戶數占2019年貧困戶總數的比)及該項目的脫貧率見下表:實施項目種植業(yè)養(yǎng)殖業(yè)工廠就業(yè)服務業(yè)參加用戶比脫貧率那么年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的()A.倍 B.倍 C.倍 D.倍12.已知函數的定義域為,則函數的定義域為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數在上僅有2個零點,設,則在區(qū)間上的取值范圍為_______.14.若一組樣本數據7,9,,8,10的平均數為9,則該組樣本數據的方差為______.15.的展開式中,常數項為______;系數最大的項是______.16.利用等面積法可以推導出在邊長為a的正三角形內任意一點到三邊的距離之和為定值,類比上述結論,利用等體積法進行推導,在棱長為a的正四面體內任意一點到四個面的距離之和也為定值,則這個定值是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,正方形所在平面外一點滿足,其中分別是與的中點.(1)求證:;(2)若,且二面角的平面角的余弦值為,求與平面所成角的正弦值.18.(12分)在直角坐標系中,曲線的參數方程為(為參數,將曲線經過伸縮變換后得到曲線.在以原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為.(1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標方程;(2)已知點是曲線上的任意一點,又直線上有兩點和,且,又點的極角為,點的極角為銳角.求:①點的極角;②面積的取值范圍.19.(12分)(本小題滿分12分)已知橢圓C:x2a2+y(1)求橢圓C的標準方程;(2)過點A(1,0)的直線與橢圓C交于點M,N,設P為橢圓上一點,且OM+ON=t20.(12分)為調研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數之比為,且成績分布在的范圍內,規(guī)定分數在50以上(含50)的作文被評為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中構成以2為公比的等比數列.(1)求的值;(2)填寫下面列聯(lián)表,能否在犯錯誤的概率不超過0.01的情況下認為“獲得優(yōu)秀作文”與“學生的文理科”有關?文科生理科生合計獲獎6不獲獎合計400(3)將上述調查所得的頻率視為概率,現從全市參考學生中,任意抽取2名學生,記“獲得優(yōu)秀作文”的學生人數為,求的分布列及數學期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821.(12分)已知,均為給定的大于1的自然數,設集合,.(Ⅰ)當,時,用列舉法表示集合;(Ⅱ)當時,,且集合滿足下列條件:①對任意,;②.證明:(?。┤?,則(集合為集合在集合中的補集);(ⅱ)為一個定值(不必求出此定值);(Ⅲ)設,,,其中,,若,則.22.(10分)在三棱柱中,四邊形是菱形,,,,,點M、N分別是、的中點,且.(1)求證:平面平面;(2)求四棱錐的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據頻率分布直方圖中頻率=小矩形的高×組距計算成績低于60分的頻率,再根據樣本容量求出班級人數.【詳解】根據頻率分布直方圖,得:低于60分的頻率是(0.005+0.010)×20=0.30,∴樣本容量(即該班的學生人數)是60(人).故選:D.【點睛】本題考查了頻率分布直方圖的應用問題,也考查了頻率的應用問題,屬于基礎題2、C【解析】
根據等差數列的求和公式即可得出.【詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.【點睛】本題主要考查了等差數列的求和公式,考查了推理能力與計算能力,屬于中檔題.3、B【解析】∵,,∴①若為鈍角,則,由余弦定理得,解得;②若為銳角,則,同理得.故選B.4、B【解析】
根據交集的定義,,可知,代入計算即可求出.【詳解】由,可知,又因為,所以時,,解得.故選:B.【點睛】本題考查交集的概念,屬于基礎題.5、B【解析】
直接代入檢驗,排除其中三個即可.【詳解】由題意,排除D,,排除A,C.同時B也滿足,,,故選:B.【點睛】本題考查由數列的項選擇通項公式,解題時可代入檢驗,利用排除法求解.6、C【解析】
首先,根據二倍角公式和輔助角公式化簡函數解析式,根據所求函數的周期性,得到其周期為4,然后借助于三角函數的周期性確定其值即可.【詳解】解:.,,的周期為,,,,,..故選:C【點睛】本題重點考查了三角函數的圖象與性質、三角恒等變換等知識,掌握輔助角公式化簡函數解析式是解題的關鍵,屬于中檔題.7、C【解析】
由復數除法的運算法則求出,再由模長公式,即可求解.【詳解】由.故選:C.【點睛】本題考查復數的除法和模,屬于基礎題.8、C【解析】
利用先求出,然后計算出結果.【詳解】根據題意,當時,,,故當時,,數列是等比數列,則,故,解得,故選.【點睛】本題主要考查了等比數列前項和的表達形式,只要求出數列中的項即可得到結果,較為基礎.9、B【解析】
,將代入,求得公差d,再利用等差數列的前n項和公式計算即可.【詳解】由已知,,,故,解得或(舍),故,.故選:B.【點睛】本題考查等差數列的前n項和公式,考查等差數列基本量的計算,是一道容易題.10、B【解析】
畫出函數圖像,根據圖像知:,,,計算得到答案.【詳解】,畫出函數圖像,如圖所示:根據圖像知:,,故,且.故.故選:.【點睛】本題考查了函數零點問題,意在考查學生的計算能力和應用能力,畫出圖像是解題的關鍵.11、B【解析】
設貧困戶總數為,利用表中數據可得脫貧率,進而可求解.【詳解】設貧困戶總數為,脫貧率,所以.故年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的倍.故選:B【點睛】本題考查了概率與統(tǒng)計,考查了學生的數據處理能力,屬于基礎題.12、A【解析】試題分析:由題意,得,解得,故選A.考點:函數的定義域.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先根據零點個數求解出的值,然后得到的解析式,采用換元法求解在上的值域即可.【詳解】因為在上有兩個零點,所以,所以,所以且,所以,所以,所以,令,所以,所以,因為,所以,所以,所以,所以,,所以.故答案為:.【點睛】本題考查三角函數圖象與性質的綜合,其中涉及到換元法求解三角函數值域的問題,難度較難.對形如的函數的值域求解,關鍵是采用換元法令,然后根據,將問題轉化為關于的函數的值域,同時要注意新元的范圍.14、1【解析】
根據題意,由平均數公式可得,解得的值,進而由方差公式計算,可得答案.【詳解】根據題意,數據7,9,,8,10的平均數為9,則,解得:,則其方差.故答案為:1.【點睛】本題考平均數、方差的計算,考查運算求解能力,求解時注意求出的值,屬于基礎題.15、【解析】
求出二項展開式的通項,令指數為零,求出參數的值,代入可得出展開式中的常數項;求出項的系數,利用作商法可求出系數最大的項.【詳解】的展開式的通項為,令,得,所以,展開式中的常數項為;令,令,即,解得,,,因此,展開式中系數最大的項為.故答案為:;.【點睛】本題考查二項展開式中常數項的求解,同時也考查了系數最大項的求解,涉及展開式通項的應用,考查分析問題和解決問題的能力,屬于中等題.16、【解析】
計算正四面體的高,并計算該正四面體的體積,利用等體積法,可得結果.【詳解】作平面,為的重心如圖則,所以設正四面體內任意一點到四個面的距離之和為則故答案為:【點睛】本題考查類比推理的應用,還考查等體積法,考驗理解能力以及計算能力,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)先證明EF平面,即可求證;(2)根據二面角的余弦值,可得平面,以為坐標原點,建立空間直角坐標系,利用向量計算線面角即可.【詳解】(1)連接,交于點,連結.則,故面.又面,因此.(2)由(1)知即為二面角的平面角,且.在中應用余弦定理,得,于是有,即,從而有平面.以為坐標原點,建立如圖所示的空間直角坐標系,則,于是,,設平面的法向量為,則,即,解得于是平面的一個法向量為.設直線與平面所成角為,因此.【點睛】本題主要考查了線面垂直,線線垂直的證明,二面角,線面角的向量求法,屬于中檔題.18、(1)曲線為圓心在原點,半徑為2的圓.的極坐標方程為(2)①②【解析】
(1)求得曲線伸縮變換后所得的參數方程,消參后求得的普通方程,判斷出對應的曲線,并將的普通方程轉化為極坐標方程.(2)①將的極角代入直線的極坐標方程,由此求得點的極徑,判斷出為等腰三角形,求得直線的普通方程,由此求得,進而求得,從而求得點的極角.②解法一:利用曲線的參數方程,求得曲線上的點到直線的距離的表達式,結合三角函數的知識求得的最小值和最大值,由此求得面積的取值范圍.解法二:根據曲線表示的曲線,利用圓的幾何性質求得圓上的點到直線的距離的最大值和最小值,進而求得面積的取值范圍.【詳解】(1)因為曲線的參數方程為(為參數),因為則曲線的參數方程所以的普通方程為.所以曲線為圓心在原點,半徑為2的圓.所以的極坐標方程為,即.(2)①點的極角為,代入直線的極坐標方程得點極徑為,且,所以為等腰三角形,又直線的普通方程為,又點的極角為銳角,所以,所以,所以點的極角為.②解法1:直線的普通方程為.曲線上的點到直線的距離.當,即()時,取到最小值為.當,即()時,取到最大值為.所以面積的最大值為;所以面積的最小值為;故面積的取值范圍.解法2:直線的普通方程為.因為圓的半徑為2,且圓心到直線的距離,因為,所以圓與直線相離.所以圓上的點到直線的距離最大值為,最小值為.所以面積的最大值為;所以面積的最小值為;故面積的取值范圍.【點睛】本小題考查坐標變換,極徑與極角;直線,圓的極坐標方程,圓的參數方程,直線的極坐標方程與普通方程,點到直線的距離等.考查數學運算能力,包括運算原理的理解與應用、運算方法的選擇與優(yōu)化、運算結果的檢驗與改進等.也兼考了數學抽象素養(yǎng)、邏輯推理、數學運算、直觀想象等核心素養(yǎng).19、(1)x24+【解析】試題分析:本題主要考查橢圓的標準方程及其幾何性質、直線與橢圓的位置關系等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.第一問,先利用離心率、a2=b2+c2、四邊形的面積列出方程,解出a和b的值,從而得到橢圓的標準方程;第二問,討論直線MN的斜率是否存在,當直線MN的斜率存在時,直線方程與橢圓方程聯(lián)立,消參,利用韋達定理,得到x1+x2、x1x試題解析:(1)∵e=22,??∴又S=12×2a×2b=4∴橢圓C的標準方程為x2(2)由題意知,當直線MN斜率存在時,設直線方程為y=k(x-1),M(x聯(lián)立方程x24+因為直線與橢圓交于兩點,所以Δ=16k∴x又∵OM∴因為點P在橢圓x24+即2k又∵|OM即|NM|<4化簡得:13k4-5k2∵t2=1-當直線MN的斜率不存在時,M(1,??62∴t∈[-1,??考點:橢圓的標準方程及其幾何性質、直線與橢圓的位置關系.20、(1),,.(2)填表見解析;在犯錯誤的概率不超過0.01的情況下,不能認為“獲得優(yōu)秀作文”與“學生的文理科”有關(3)詳見解析【解析】
(1)根據頻率分步直方圖和構成以2為公比的等比數列,即可得解;(2)由頻率分步直方圖算出相應的頻數即可填寫列聯(lián)表,再用的計算公式運算即可;(3)獲獎的概率為,隨機變量,再根據二項分布即可求出其分布列與期望.【詳解】解:(1)由頻率分布直方圖可知,,因為構成以2為公比的等比數列,所以,解得,所以,.故,,.(2)獲獎的人數為人,因為參考的文科生與理科生人數之比為,所以400人中文科生的數量為,理科生的數量為.由表可知,獲獎的文科生有6人,所以獲獎的理科生有人,不獲獎的文科生有人.于是可以得到列聯(lián)表如下:文科生理科生合計獲獎61420不獲獎74306380合計80320400所以在犯錯誤的概率不超過0.01的情況下,不能認為“獲得優(yōu)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣告創(chuàng)意評估與優(yōu)化考核試卷
- 低溫倉儲的冷設置與濕度調節(jié)考核試卷
- 儀器儀表制造業(yè)的企業(yè)文化與團隊建設考核試卷
- 搪瓷顏料的配方與應用考核試卷
- 學前教育的情感培養(yǎng)教育考核試卷
- 2024廣告墻面租賃合同
- 講故事英語活動頒獎
- 2024農村土地流轉租賃合同
- 天然氣的資源儲備與開發(fā)潛力考核試卷
- 《物聯(lián)網及其發(fā)展》課件
- BIM技術全過程工程管理及應用策劃方案
- 彎扭構件制作工藝方案(共22頁)
- 水利工程填塘固基、堤身加固施工方法
- 中醫(yī)針灸的骨邊穴怎樣定位
- 人教版八年級上冊英語單詞表默寫版(直接打印)
- 電脫水、電脫鹽講解
- 江西省科技創(chuàng)新平臺建設(PPT課件)
- 違約損失率(LGD)研究
- XSD3016輪式洗砂機結構設計和實現機械設計和自動化專業(yè)論文設計
- 溝槽回填施工方案(完整版)
- 2021-2025鄉(xiāng)村5年規(guī)劃三篇
評論
0/150
提交評論