DNA序列分類(2000年競(jìng)賽題)_第1頁
DNA序列分類(2000年競(jìng)賽題)_第2頁
DNA序列分類(2000年競(jìng)賽題)_第3頁
DNA序列分類(2000年競(jìng)賽題)_第4頁
DNA序列分類(2000年競(jìng)賽題)_第5頁
已閱讀5頁,還剩55頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

DNA序列分類(2000年競(jìng)賽題)DNA序列分類(2000年競(jìng)賽題)/NUMPAGES60DNA序列分類(2000年競(jìng)賽題)DNA序列分類(2000年競(jìng)賽題)DNA序列分類摘要本問題是一個(gè)“有人管理分類問題”。首先分別列舉出20個(gè)學(xué)習(xí)樣本序列中1字符串、2字符串、3字符串出現(xiàn)的頻率,構(gòu)成含41個(gè)變量的基本特征集,接著用主成分分析法從中提取出4個(gè)特征。然后用Fisher線性判別法進(jìn)行分類,得出了所求20個(gè)人工制造序列及182個(gè)自然序列的分類結(jié)果如下:20個(gè)人工序列:22,23,25,27,29,34,35,36,37為A類,其余為B類。182個(gè)自然序列:1,4,8,10,27,29,32,41,43,48,54,63,70,72,75,76,81,86,90,92,102,110,116,119,126,131,144,150,157,159,160,161,162,163,164,165,166,169,170,182為B類,其余為A類。最后通過檢驗(yàn)證明所用的分類數(shù)學(xué)模型效率較高。問題重述人類基因組計(jì)劃中DNA全序列草圖是由4個(gè)字符A,T,C,G按一定順序排成的長約30億的序列,其中沒有“斷句”也沒有標(biāo)點(diǎn)符號(hào)。雖然人類對(duì)它知之甚少,但也發(fā)現(xiàn)了其中的一些規(guī)律性和結(jié)構(gòu)。例如,在全序列中有一些是用于編碼蛋白質(zhì)的序列片段,即由這4個(gè)字符組成的64種不同的3字符串,其中大多數(shù)用于編碼構(gòu)成蛋白質(zhì)的20種氨基酸。又例如,在不用于編碼蛋白質(zhì)的序列片段中,A和T的含量特別多些,于是以某些堿基特別豐富作為特征去研究DNA序列的結(jié)構(gòu)也取得了一些結(jié)果。此外,利用統(tǒng)計(jì)的方法還發(fā)現(xiàn)序列的某些片段之間具有相關(guān)性,等等。這些發(fā)現(xiàn)讓人們相信,DNA序列中存在著局部的和全局性的結(jié)構(gòu),充分發(fā)掘序列的結(jié)構(gòu)對(duì)理解DNA全序列是十分有意義的。目前在這項(xiàng)研究中最普通的思想是省略序列的某些細(xì)節(jié),突出特征,然后將其表示成適當(dāng)?shù)臄?shù)學(xué)對(duì)象。作為研究DNA序列的結(jié)構(gòu)的嘗試,提出以下對(duì)序列集合進(jìn)行分類的問題:1)請(qǐng)從20個(gè)已知類別的人工制造的序列(其中序列標(biāo)號(hào)1—10為A類,11-20為B類)中提取特征,構(gòu)造分類方法,并用這些已知類別的序列,衡量你的方法是否足夠好。然后用你認(rèn)為滿意的方法,對(duì)另外20個(gè)未標(biāo)明類別的人工序列(標(biāo)號(hào)21—40)進(jìn)行分類,把結(jié)果用序號(hào)(按從小到大的順序)標(biāo)明它們的類別(無法分類的不寫入)同樣方法對(duì)182個(gè)自然DNA序列(它們都較長)進(jìn)行分類,像1)一樣地給出分類結(jié)果。二.模型的合理假設(shè)各序列中DNA堿基三聯(lián)組(即3字符串)的起始位置和基因表達(dá)不影響分類的結(jié)果。64種3字符串壓縮為20組后不影響分類的結(jié)果。較長的182個(gè)自然序列與已知類別的20個(gè)樣本序列具有共同的特征。三.模型建立與求解研究DNA序列具有什么結(jié)構(gòu),其A,T,C,G4個(gè)堿基排成的看似隨機(jī)的序列中隱藏著什么規(guī)律,是解讀人類基因組計(jì)劃中DNA全序列草圖的基礎(chǔ),也是生物信息學(xué)(Bioinformaties)最重要的課題之一。題目給出了20個(gè)已知為兩個(gè)類別的人工制造的DNA序列,要求我們從中提取特征,構(gòu)造分類方法,從而對(duì)20個(gè)未標(biāo)明類別的人工DNA序列和182個(gè)自然DNA序列進(jìn)行分類。這是模式識(shí)別中的“有人管理分類”問題,即事先規(guī)定了分類的標(biāo)準(zhǔn)和種類的數(shù)目,通過大批已知樣本的信息處理找出規(guī)律,再用計(jì)算機(jī)預(yù)報(bào)未知。給出的已知類別的樣本稱為學(xué)習(xí)樣本。對(duì)于此類問題,我們通過建立分類數(shù)學(xué)模型(這包括形成和提取特征以及制定分類決策)、考查分類模型的效率、預(yù)報(bào)未知這幾個(gè)步驟來進(jìn)行。特征的形成和提取為了有效地實(shí)現(xiàn)分類識(shí)別,首先要根據(jù)被識(shí)別的對(duì)象產(chǎn)生一組基本特征,并對(duì)基本特征進(jìn)行變換,得到最能反映分類本質(zhì)的特征。這就是特征形成和提取的過程。在列舉了盡可能完備的特征參數(shù)集之后,就要借助于數(shù)學(xué)的方法,使特征參數(shù)的數(shù)目(在保證分類良好的前提下)減到最小。這是因?yàn)椋?.多余的特征參數(shù)不但沒有多少好處,而且會(huì)帶來噪音,干擾分類和數(shù)學(xué)模型的建立。2.為了保證樣本數(shù)和特征參數(shù)個(gè)數(shù)的比值足夠大,而又不必要用太多的樣本,最好使特征參數(shù)的個(gè)數(shù)降至最少。模式識(shí)別計(jì)算一般要求樣本數(shù)至少為變量數(shù)的3倍,否則結(jié)果不夠可靠。本問題的學(xué)習(xí)樣本數(shù)為20個(gè),故特征參數(shù)的個(gè)數(shù)以6—8個(gè)為宜。我們通過研究4個(gè)字符A,T,C,G在DNA序列中的排列、組合特性,主要是研究字符和字符串的排列在序列中出現(xiàn)的頻率,從中提取DNA序列的結(jié)構(gòu)特征參數(shù)。(一)特征的形成分別列舉一個(gè)字符,2個(gè)字符,3個(gè)字符的排列在序列中出現(xiàn)的頻率,構(gòu)成基本特征集。1個(gè)字符的出現(xiàn)頻率表1列出了20個(gè)樣本中A,T,C,G這4個(gè)字符出現(xiàn)的頻率。由于在不用于編碼蛋白質(zhì)的序列片段中,A和T的含量特別多些,因此我們將A和T是否特別豐富作為一個(gè)特征。在表一中,列出了A和T出現(xiàn)的頻率之和。(程序見附錄一)表 1ACTGA+T1.29.7317.1213.5139.6443.242.27.0316.2215.3241.4442.343.27.0321.626.3145.0533.334.42.3410.8128.8318.0271.175.23.4223.4210.8142.3434.236.35.1412.6112.6139.6447.757.35.149.9118.9236.0454.058.27.9316.2218.9236.9446.859.20.7220.7215.3243.2436.0410.18.1811.35.454.5550.0010.0085.4512.32.732.7350.0014.5582.7313.25.4510.0051.8212.7377.2714.30.008.1850.0011.8280.0015.29.09.0064.556.3693.6416.36.368.1846.369.0982.7317.35.4524.5526.3613.6461.8218.29.0911.8250.009.0979.0919.21.8214.5556.367.2778.1820.20.0017.2756.366.3676.362.2字符串的排列出現(xiàn)的頻率A,T,C,G這4個(gè)字符組成了16種不同的2字符串。表2列出了20個(gè)樣本中各2字符串出現(xiàn)的頻率。(用“滾動(dòng)”算法,如attcg有at,tt,tc,cg共4個(gè)2字符串)(程序與附錄一類似)表2AAACATAGTATCTGTTCACTCCCGGAGTGCGG1.9.019.013.608.114.50.904.503.603.603.601.808.1111.712.705.4118.922.9.917.213.605.412.701.805.415.414.501.80.909.019.914.505.4121.623.5.4111.713.605.412.701.80.90.905.41.90.9014.4113.51.907.2123.424.18.925.4111.715.4110.811.805.4110.815.411.80.902.706.314.502.704.505.6.318.111.807.211.802.702.703.605.414.502.7010.819.91.909.0121.626.15.322.706.319.913.601.801.805.414.50.00.008.1110.81.908.1119.827.15.321.8010.817.214.502.706.315.41.901.80.906.3113.51.904.5016.229.9.0110.6.363.641.826.361.825.452.733.645.453.644.5513.644.553.6413.6418.1811.15.452.7314.552.7316.36.911.8230.00.91.91.911.822.734.55.002.7312.13.64.9110.916.3615.451.821.8230.91.91.91.00.912.737.27.004.5513.6.364.5510.004.5512.731.822.7334.552.732.731.821.823.644.551.822.7314.8.18.9112.737.2713.646.361.8228.182.734.55.00.915.454.55.91.9116.16.363.6415.45.9113.644.554.5522.731.825.45.00.914.552.73.001.8220.6.366.366.36.919.0910.003.6432.732.7313.64.91.001.823.64.00.913.3字符串的排列出現(xiàn)的頻率A,T,C,G這4個(gè)字符組成了64種不同的3字符串。這64種3字符串構(gòu)成生物蛋白質(zhì)的20種氨基酸。在參考文獻(xiàn)[1]的Figur2中,給出了這20種氨基酸的編碼(見圖1)。因此,在計(jì)算3字符串的出現(xiàn)頻率時(shí),我們根據(jù)圖1將代表同一種氨基酸的3字符串合成一類,只統(tǒng)計(jì)20類3字符串的出現(xiàn)頻率。(不考慮字符串在序列片段中的起始位置,也采用“滾動(dòng)”算法。如acgtcc中就有acg,cgt,gtc,tcc共4個(gè)3字符串)見表3。(程序與附錄一類似)Figure2.Symmetriesofthediamondcodesortthe64codonsinto20classes,indicatedhereby20colors.Allthecodonsineachclassspecifiedthesameaminoacid.圖1BrianHayes在論文“TheInventionoftheGeneticCode”中給出的圖形(注:圖中DNA被轉(zhuǎn)錄為RNA,“U”代表“T”)表3b1b2b3b4b5b6b7b8b9b10b11b12b13b14b15b16b17b18b19b2011.773.542.650.880.000.007.960.884.422.6517.7010.623.544.424.427.081.773.5413.277.0821.891.890.940.940.000.941.890.944.7212.267.5511.328.493.773.776.609.436.607.552.8330.980.000.005.880.988.822.940.000.002.9410.785.8813.730.004.903.9219.611.968.825.8840.000.000.000.870.000.8713.041.746.092.6111.3013.043.485.223.488.703.481.7414.78,7.8352.860.000.003.810.953.813.810.003.813.819.529.5212.382.869.524.767.622.867.629.5260.000.000.882.630.001.7513.160.884.391.7514.049.657.025.264.3911.402.631.7510.536.1471.920.000.002.880.964.812.880.001.924.8112.506.7313.461.926.734.8110.583.859.627.6982.563.420.000.850.850.8512.820.851.710.8520.512.563.429.405.9811.110.854.2711.973.4290.000.000.002.972.979.902.970.000.993.966.931.9813.861.982.973.9623.762.978.916.93101.870.933.742.800.000.002.800.007.488.419.357.483.7414.9512.150.002.804.677.487.48110.000.890.000.000.001.798.040.005.364.4615.188.048.934.463.578.044.466.2513.395.36122.730.000.912.730.913.644.553.643.641.829.095.453.645.456.367.278.185.4510.919.09131.800.900.900.900.000.909.010.003.607.2114.418.117.216.317.214.501.807.2111.714.50142.940.000.005.880.006.861.960.003.926.863.929.8013.730.985.882.9410.780.9810.789.80152.911.942.911.940.005.831.940.001.949.715.838.7410.681.943.883.888.742.9111.6510.68162.860.950.0011.431.901.902.860.004.763.815.718.578.576.679.524.765.712.867.627.62171.920.961.924.811.923.851.920.960.966.734.818.6510.582.886.732.889.626.738.657.69181.710.851.710.850.852.5616.240.851.710.8516.245.136.845.983.4211.111.715.1311.113.42190.940.941.890.940.940.941.890.9410.387.555.669.438.498.497.555.666.6011.326.600.94200.860.860.001.720.860.8617.240.862.591.7215.527.765.173.454.319.485.175.179.485.17其中b1=aaa+atab2=aca+agab3=cac+ctcb4=ccc+cgcb5=gag+gtgb6=gcg+gggb7=tat+tttb8=tct+tgtb9=aac+caa+atc+ctab10=aag+gaa+atg+gtab11=aat+taa+att+ttab12=acc+cca+agc+cgab13=acg+gac+ctg+gtcb14=act+tca+agt+tgab15=cag+gac+ctt+ttcb16=cat+tac+ctt+ttcb17=ccg+gcc+cgg+ggcb18=cct+tcc+cgt+tgcb19=gat+tag+gtt+ttgb20=gct+tcg+ggt+tgg綜合起來,形成了有41個(gè)變量的基本特征集。(二)特征的提取上述基本特征集中有41個(gè)變量,即樣本處于一個(gè)高維空間中。特征的提取就是通過變換的方法用低維空間來表示樣本,使得X的大部分特性能由Y來表達(dá),即將p維隨機(jī)向量X變換成q維隨機(jī)向量Y(q<p)。我們用主成分分析法進(jìn)行特征的提取,其步驟是:求X的均方差矩陣V的特征根,記為:λ1≥λ2≥……≥λk>0λk+1=……=λP=0求λ1,λ2……λK對(duì)應(yīng)的標(biāo)準(zhǔn)正交的特征向量r1,r2……rK得到第i個(gè)主成分為yi=riX,i=1,2……K求第i個(gè)主成分的貢獻(xiàn)率ui=λi/λj,i=1,2……K及前m個(gè)主成分的累計(jì)貢獻(xiàn)率vm=ui.求得q,使得Vq≥V0(V0一般在0.85到1之間),則取W=(r1,r2,……,rq)Y=XW第3步所求的貢獻(xiàn)率,代表主成分表達(dá)X的能力,貢獻(xiàn)率越大,對(duì)應(yīng)的主成分表達(dá)X的能力越強(qiáng)。只要前q個(gè)主成分的累計(jì)貢獻(xiàn)率超過給定的百分比V。就可以用低維特征Y=(y1,y2,……yq)來反映高維特征(x1,x2……xp)的變化特性?,F(xiàn)將反映20個(gè)已知類別樣本的41個(gè)特征的隨機(jī)向量X進(jìn)行特征提取。計(jì)算得前4個(gè)主成分的累計(jì)貢獻(xiàn)率為96%,故提取特征為4個(gè)變量,取W=(r1,r2,r3,r4),則Y=XW,Y的4個(gè)分量就是從基本特征集提取所得的特征參數(shù)向量。(程序及結(jié)果見附錄二)分類決策的制定前面已選取了特征參數(shù),把特征參數(shù)張成的多維空間稱為特征空間。分類決策就是在特征空間中用統(tǒng)計(jì)的方法把被識(shí)別對(duì)象歸為某一類別?;咀鞣ㄊ窃趯W(xué)習(xí)樣本集的基礎(chǔ)上確定某個(gè)判決規(guī)則,使按這種判決規(guī)則對(duì)被甄別對(duì)象進(jìn)行分類所造成的錯(cuò)誤識(shí)別率最小或引起的損失最少。這里,我們的分類決策選取Fisher線性判別法。即選取線性判別函數(shù)U(x),使得:U(x)={E1[U(x)]-E2[U(x)]}2/{D1[U(x)]+D2[U(x)]}=max(1)其中Ei與Di分別表示母體i的期望和方差運(yùn)算,i=1,2。(1)式的含義是:構(gòu)造一個(gè)線性判別函數(shù)U(x)對(duì)樣本進(jìn)行分類,使得平均出錯(cuò)概率最小。即應(yīng)在不同母體下,使U(x)的取值盡量分開。具體地說,要使母體間的差異(E1(U(x))-E2(U(x)))2相對(duì)于母體內(nèi)的差異D1[U(x)]+D2[U(x)]為最大。取U(x)=(1-2)'(∑1+∑2)-1X就可滿足(1)。其中i為第i類母體的均值矩陣的估計(jì),∑i為第i類母體的方差矩陣的估計(jì)。取分類門檻值為:U0=U(α*1+(1-α)*2)其中0<α<1,本問題中兩類樣本的個(gè)數(shù)相等,可取α=1/2。若U(1)>U0,U(2)<U0,則當(dāng)U(X)>U0.,就認(rèn)為X取自母體1;當(dāng)U(X)<U0,就認(rèn)為X取自母體2。用上面得出的4個(gè)主成分構(gòu)成的特征組和此分類決策,對(duì)20個(gè)學(xué)習(xí)樣本進(jìn)行分類,能得出正確的結(jié)果。但是,若取W=(r1,r2,r3),求Y=XW,以Y的3個(gè)分量作為特征參數(shù)向量,再用Fisher線性判別法對(duì)20個(gè)學(xué)習(xí)樣本進(jìn)行分類,則第四個(gè)樣本不能正確分類。因此,得出分類的數(shù)學(xué)模型為:特征選?。喝=(r1,r2,r3,r4),求Y=XW,得出特征參數(shù)向量就是Y的4個(gè)列向量。其中X是反映20個(gè)學(xué)習(xí)樣本的41個(gè)特征的隨機(jī)向量。分類決策:Fisher線性判別法。三.分類模型的有效性考查前面建立的分類數(shù)學(xué)模型對(duì)20個(gè)學(xué)習(xí)樣本進(jìn)行了正確分類。為了進(jìn)一步考查分類模型的有效性和可靠性,我們采用的方法是:預(yù)先留一部分學(xué)習(xí)樣本不參加訓(xùn)練,然后用分類決策模型對(duì)其作預(yù)報(bào),將預(yù)報(bào)成功率作為預(yù)報(bào)能力的指標(biāo)。每次取出一個(gè)學(xué)習(xí)樣本,以其余學(xué)習(xí)樣本作訓(xùn)練集,用分類決策模型對(duì)取出的一個(gè)樣本作預(yù)報(bào),同時(shí)對(duì)給出的后20種樣本作預(yù)報(bào)。結(jié)果見表4。表4取出樣品序號(hào)取出樣本類別預(yù)報(bào)后20組樣本中A類序號(hào)預(yù)報(bào)1A22,23,25,27,29,34,35,36,372A22,23,25,27,29,34,35,36,373A22,23,25,27,29,34,35,36,374A23,25,27,29,34,35,36,375A22,23,25,27,29,34,35,36,376A22,23,25,27,29,34,35,36,377A22,23,25,27,29,34,35,36,378A22,23,25,27,29,34,35,36,379A22,23,25,27,29,34,35,36,3710A22,23,25,27,29,34,35,36,3711B22,23,25,27,29,34,35,36,3712B22,23,25,27,29,34,35,36,3713B22,23,25,27,29,34,35,36,3714B22,23,25,27,29,34,35,36,3715B22,23,25,27,29,34,35,36,37,3916B22,23,25,27,29,34,35,36,3717B22,23,25,27,29,34,35,36,37,30,3918B22,23,25,27,29,34,35,36,3719B22,23,25,27,29,34,35,36,3720B22,23,25,27,29,34,35,37從表4可以看出:每次取出一個(gè)學(xué)習(xí)樣本,以其余學(xué)習(xí)樣本作訓(xùn)練集,用分類模型對(duì)該學(xué)習(xí)樣本的預(yù)報(bào)的成功率是100%。每次取出一個(gè)學(xué)習(xí)樣本,以其余學(xué)習(xí)樣本作訓(xùn)練集,用分類模型對(duì)未知類別的第21~40個(gè)樣本進(jìn)行預(yù)報(bào),其結(jié)果有以下特點(diǎn):除分別取出4、15、17,20的預(yù)報(bào)結(jié)果不同外,分別取出其余16中一個(gè),預(yù)報(bào)結(jié)果均為:22,23,25,27,29,34,35,36,37,占80%。分別取出4、15、20的預(yù)報(bào)結(jié)果,與(1)的結(jié)果相比,只有一個(gè)樣本的差異,占15%。取出17的預(yù)報(bào)結(jié)果,與(1)的結(jié)果相比,有兩個(gè)樣本的差異,占5%。第一種結(jié)果和第二種結(jié)果非常接近,合計(jì)占總數(shù)的95%。只有第三組的這一個(gè)結(jié)果有較大差異,占總數(shù)的5%。由以上檢驗(yàn)得出結(jié)論:所建立的分類數(shù)學(xué)模型分類效果很好。四.未知樣本的預(yù)報(bào)現(xiàn)在用前面建立的數(shù)學(xué)模型對(duì)題目所給的未知類型的20個(gè)人工序列和182個(gè)自然序列進(jìn)行預(yù)報(bào)。(程序見附錄三)結(jié)果為:20個(gè)人工序列的類別A類:22,23,25,27,29,34,35,36,37B類:21、24、26、28、30、31、32、33、38、39、40182個(gè)自然序列的類別A類:(共142個(gè))2,3,5,6,7,9,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,28,30,31,33,34,35,36,37,38,39,40,42,44,45,46,47,49,50,51,52,53,55,56,57,58,59,60,61,62,64,65,66,67,68,69,71,73,74,77,78,79,80,82,83,84,85,87,88,89,91,93,94,95,96,97,98,99,100,101,103,104,105,106,107,108,109,111,112,113,114,115,117,118,120,121,122,123,124,125,127,128,129,130,132,133,134,135,136,137,138,139,140,141,142,143,145,146,147,148,149,151,152,153,154,155,156,158,167,168,171,172,173,174,175,176,177,178,179,180,181B類:(共40個(gè))1,4,8,10,27,29,32,41,43,48,54,63,70,72,75,76,81,86,90,92,102,110,116,119,126,131,144,150,157,159,160,161,162,163,164,165,166,169,170,182模型的優(yōu)缺點(diǎn)分析優(yōu)點(diǎn):針對(duì)`“有人管理分類”問題,成功地建立解決這類難題的數(shù)學(xué)模型,并可立即運(yùn)用到實(shí)踐中去。僅用4個(gè)特征參數(shù)即圓滿解決了較為復(fù)雜的分類問題。而且模型假設(shè)條件少,因而能準(zhǔn)確地反映實(shí)際情況,可靠性高。采用模塊化分析,逐漸深入,提高了準(zhǔn)確性。突出特征,假設(shè)合理,避免了在一些細(xì)節(jié)問題上的糾纏。缺點(diǎn):由于只考慮了DNA樣本序列中1字符串、2字符串、3字符串出現(xiàn)的頻率作為特征,DNA序列的分類不一定與實(shí)際情況完全相符。(可以由科學(xué)家用物理的或化學(xué)的方法測(cè)定,作為補(bǔ)充)。模型的改進(jìn)方向及推廣模型的改進(jìn):因?yàn)槟P蜎]考慮DNA序列的實(shí)際特性,當(dāng)序列變得很多很長很復(fù)雜時(shí),分類的準(zhǔn)確性會(huì)降低而不可用,因此應(yīng)增加對(duì)DNA序列的生物特性的考慮。模型的推廣:該模型對(duì)一般的“有人管理分類”問題的求解有重要意義。對(duì)研究DNA序列的規(guī)律性和結(jié)構(gòu)提供了一種有效的分類模型。對(duì)人類基因組的研究有現(xiàn)實(shí)意義,有利于加快科研步伐。六.參考文獻(xiàn)[1]TheInventionoftheGeneticCode,BrainHayes(美),AmericanScientist—ComputingScience,Jan.-Feb.,1998[2]《MATLAB入門》后勤工程學(xué)院1997[3]《數(shù)學(xué)實(shí)驗(yàn)》蕭樹鐵主編高等教育出版社1999[4]《概率論第二冊(cè)——數(shù)理統(tǒng)計(jì)》復(fù)旦大學(xué)高等教育出版社1985[5]《生命科學(xué)模型》WilliamF.Lucas主編國防科技大學(xué)出版社1996[6]《運(yùn)籌學(xué)基礎(chǔ)手冊(cè)》徐光煇主編科學(xué)出版社1999[7]《數(shù)學(xué)模型》姜啟源主編高等數(shù)學(xué)出版社1993七.附錄附錄一1個(gè)字符出現(xiàn)頻率的計(jì)算程序]CHARACTER*121LINE(40) integera,c,t,g,at READ*,LINE DO20II=1,40 iii=ii+20A=0 C=0 T=0 G=0DO10I=1,121 IF(LINE(ii)(I:I).EQ.’a’)THEN A=A+1 elseif(line(ii)(I:I).eq.’c’)then c=c+1 elseif(line(ii)(I:I).eq.’t’)then t=t+1 elseif(line(ii)(I:I).eq.’g’)then g=g+1ENDIFcontinue at=a+t actg=a+c+t+g aa=a/actg*100. cc=c/actg*100. tt=t/actg*100. gg=g/actg*100. aatt=at/actg*100. open(5,file='t1.dat',status='old') write(5,1)aa,cc,tt,gg1 format(1x,4f7.2)20 CONTINUE END附錄二基本特征量的提取程序及結(jié)果d=[27.4319.4736.2816.8163.72;28.8524.0422.1225.0050.96;17.6525.4918.6338.2436.27;20.8719.1340.8719.1361.74;24.7622.8621.9030.4846.67;21.9321.0538.6018.4260.53;23.0820.1923.0833.6546.15;25.6414.5344.4415.3870.09;14.8521.7818.8144.5533.66;28.9724.3025.2321.5054.21;24.1117.8635.7122.3259.82;17.4322.9433.0326.6150.46;27.0318.9233.3320.7260.36;23.5323.5316.6736.2740.20;24.2721.3620.3933.9844.66;22.8630.4820.9525.7143.81;21.3625.2420.3933.0141.75;22.2217.0943.5917.0965.81;27.3628.3023.5820.7550.94;19.8319.8343.1017.2462.93];dd=[5.314.427.968.859.736.191.7718.586.194.424.424.426.194.424.421.77;7.699.623.857.699.623.85.966.732.881.927.6911.547.698.652.884.81;2.943.925.884.903.922.941.969.80.001.9612.759.8010.78.984.9021.57;1.744.353.4811.3013.041.742.6122.612.619.574.352.613.484.358.702.61;6.673.813.819.525.711.904.769.527.624.767.622.864.763.819.5212.38;3.513.515.269.657.894.391.7524.567.896.141.754.392.632.6311.401.75;5.774.814.817.696.732.882.8810.582.882.887.696.737.694.814.8115.38;3.425.139.406.8411.975.133.4223.932.566.842.562.567.693.421.712.56;1.981.983.966.933.962.972.978.911.98.998.918.916.934.957.9224.75;9.355.612.8010.287.485.615.616.548.417.482.805.613.748.419.35.00;2.685.364.4611.6115.181.79.8916.963.576.253.574.462.687.147.145.36;5.502.752.756.426.427.344.5913.764.595.506.426.42.9210.096.428.26;5.417.217.217.2110.811.805.4115.323.604.502.707.217.216.316.31.90;7.844.90.988.824.90.982.947.842.943.929.806.867.843.926.8617.65;5.834.853.889.717.773.881.946.803.882.913.889.716.806.808.7411.65;4.763.811.9012.388.575.71.006.675.713.8110.4810.483.818.579.522.86;3.882.912.9110.685.83.976.805.835.835.839.713.884.855.8311.6510.68;3.429.405.983.4210.261.714.2727.355.133.424.273.422.566.841.715.98;8.495.664.728.494.728.492.836.6011.321.899.435.662.839.434.723.77;3.457.764.314.3110.34.863.4527.591.726.038.623.454.315.171.726.03];ddd=[1.773.542.65.88.00.007.96.884.422.6517.7010.623.544.424.427.081.773.5413.277.08;1.921.92.96.96.00.961.92.964.8112.507.6911.548.653.853.856.739.626.737.692.88;.98.00.005.88.988.822.94.00.002.9410.785.8813.73.004.903.9219.611.968.825.88;.00.00.00.87.00.8713.041.746.092.6111.3013.043.485.223.488.703.481.7414.787.83;2.86.00.003.81.953.813.81.003.813.819.529.5212.382.869.523.817.622.867.629.52;.00.00.882.63.001.7513.16.884.391.7514.049.657.025.264.3911.402.631.7510.536.14;1.92.00.002.88.964.812.88.001.924.8112.506.7313.461.926.734.8110.583.859.627.69;2.563.42.00.85.85.8512.82.851.71.8520.512.563.429.405.9811.11.854.2711.973.42;.00.00.002.972.979.902.97.00.993.966.931.9813.861.982.973.9623.762.978.916.93;1.87.933.742.80.00.002.80.007.488.419.357.483.7414.9512.15.002.804.677.487.48;.00.89.00.00.001.798.04.005.364.4615.188.048.934.463.578.044.466.2513.395.36;2.75.00.922.75.923.674.593.673.671.839.175.503.675.506.427.348.265.5011.019.17;1.80.90.90.90.00.909.01.003.607.2114.418.117.216.317.214.501.807.2111.714.50;2.94.00.005.88.006.861.96.003.926.863.929.8013.73.985.882.9410.78.9810.789.80;2.911.942.911.94.005.831.94.001.949.715.838.7410.681.943.883.888.742.9111.6510.68;2.86.95.0011.431.901.902.86.004.763.815.718.578.576.679.524.765.712.867.627.62;1.94.971.944.851.943.881.94.97.976.804.858.7410.682.916.802.919.716.808.747.77;1.71.851.71.85.852.5616.24.851.71.8516.245.136.845.983.4211.111.715.1311.113.42;.94.941.89.94.94.941.89.9410.387.555.669.438.498.497.555.666.6011.326.60.94;.86.86.001.72.86.8617.24.862.591.7215.527.765.173.454.319.485.175.179.485.17];x=[29.7317.1213.5139.6443.24;27.0316.2215.3241.4442.34;27.0321.626.3145.0533.33;42.3410.8128.8318.0271.17;23.4223.4210.8142.3434.23;35.1412.6112.6139.6447.75;35.149.9118.9236.0454.05;27.9316.2218.9236.9446.85;20.7220.7215.3243.2436.04;18.1827.2713.6440.9131.82;;35.454.5550.0010.0085.45;32.732.7350.0014.5582.73;25.4510.0051.8212.7377.27;30.008.1850.0011.8280.00;29.09.0064.556.3693.64;36.368.1846.369.0982.73;35.4524.5526.3613.6461.82;29.0911.8250.009.0979.09;21.8214.5556.367.2778.18;20.0017.2756.366.3676.36];xx=[9.019.013.608.114.50.904.503.603.603.601.808.1111.712.705.4118.92;9.917.213.605.412.701.805.415.414.501.80.909.019.914.505.4121.62;5.4111.713.605.412.701.80.90.905.41.90.9014.4113.51.907.2123.42;18.925.4111.715.4110.811.805.4110.815.411.80.902.706.314.502.704.50;6.318.111.807.211.802.702.703.605.414.502.7010.819.91.909.0121.62;15.322.706.319.913.601.801.805.414.50.00.008.1110.81.908.1119.82;15.321.8010.817.214.502.706.315.41.901.80.906.3113.51.904.5016.22;8.113.606.319.915.413.602.707.212.703.601.808.1110.811.807.2116.22;9.01.904.506.31.003.607.214.503.602.702.7011.717.213.6013.5118.02;6.363.641.826.361.825.452.733.645.453.644.5513.644.553.6413.6418.18;15.452.7314.552.7316.36.911.8230.00.91.91.911.822.734.55.002.73;13.64.9110.916.3615.451.821.8230.91.91.91.00.912.737.27.004.55;6.364.5510.004.5512.731.822.7334.552.732.731.821.823.644.551.822.73;8.18.9112.737.2713.646.361.8228.182.734.55.00.915.454.55.91.91;13.64.0012.731.8213.64.002.7348.18.00.00.00.001.823.64.00.91;16.363.6415.45.9113.644.554.5522.731.825.45.00.914.552.73.001.82;17.275.4510.911.8210.006.364.555.454.557.279.092.733.642.733.643.64;8.187.2711.821.8215.451.82.9130.913.643.641.822.731.823.64.912.73;2.732.7313.641.8214.559.09.9131.821.828.181.822.732.732.73.91.91;6.366.366.36.919.0910.003.6432.732.7313.64.91.001.823.64.00.91];xxx=[5.41.902.70.905.413.60.901.802.708.114.501.8025.233.603.605.4113.51.003.604.50;2.702.70.00.003.606.312.70.907.217.216.311.8018.92.906.311.8014.41.003.6010.81;2.702.702.70.003.606.31.00.904.505.411.80.9029.73.005.414.5022.52.001.802.70;15.326.31.00.00.00.909.011.806.3110.8112.613.604.501.802.705.411.801.807.216.31;3.601.802.70.005.417.21.90.004.501.802.703.6020.721.806.314.5019.821.801.807.21;9.01.90.90.002.705.414.50.002.7013.516.31.0025.23.901.801.8016.22.002.703.60;9.011.80.00.001.804.504.50.903.6016.228.11.0017.122.701.801.8010.81.906.316.31;2.701.80.90.902.703.602.70.904.509.918.113.6018.92.902.704.5012.61.907.218.11;5.41.00.901.805.419.011.80.903.606.311.803.6011.712.702.702.7020.721.804.5010.81;3.64.912.736.363.6410.91.911.823.642.732.73.9117.27.004.554.5517.274.551.827.27;9.09.91.00.00.00.0024.55.003.646.3633.64.914.551.82.001.82.002.735.452.73;2.73.91.00.00.00.0019.09.001.828.1837.27.004.554.55.002.73.00.9110.005.45;.912.73.00.00.00.0027.271.821.825.4526.362.734.552.734.555.451.822.735.451.82;6.365.45.00.001.82.0020.005.452.732.7324.55.001.823.643.648.18.91.919.09.91;11.82.91.00.001.82.0047.271.82.003.6425.45.00.91.91.00.00.00.002.73.91;10.002.73.91.00.00.0014.554.555.453.6431.82.91.913.641.826.36.00.007.273.64;10.91.913.643.64.00.918.182.7312.739.0911.823.643.646.361.821.826.366.361.821.82;4.554.55.00.00.91.9121.82.914.55.9129.09.003.641.82.9110.912.734.554.55.91;3.64.911.82.91.91.0025.455.453.64.0021.821.821.823.64.9113.64.912.735.452.73;2.73.915.45.00.00.0023.6410.006.361.8213.64.001.828.181.8213.64.001.826.36.00];ffx=[xxxxxx];ffd=[dddddd];cx=cov(ffx);[vx,ex]=eig(cx);ex1=eig(cx);e1=mean(ex1)*41;ex2=ex1(38:41,:);e2=mean(ex2)*7;e2/e1vx1=[vx(:,38:41)];s=ffx*vx1;ss=ffd*vx1;x=s(1:10,:);y=s(11:20,:);u1=mean(x);u2=mean(y);u1-u2;z=8/9*(cov(x)+cov(y));ux=0.5*(u1-u2)*inv(z);u12=0.5*u1+0.5*u2;u0=ux*u12.';la=0;fori=1:10p(i)=ux*ss(i,:).';tx(i)=ux*x(i,:).';fy(i)=ux*y(i,:).';ifp(i)>u0pbd(i)=1;la=la+1;elsepbd(i)=2;endiftx(i)>u0lbx(i)=1;elselbx(i)=2;endiffy(i)>u0lby(i)=1;elselby(i)=2;endforn=11:20p(n)=ux*ss(n,:)';ifp(n)>u0pbd(n)=1;la=la+1;elsepbd(n)=2;endtx,fy,ppbd,lbx,lbyans=0.9847u0=-2.4812tx=Columns1through78.24719.707410.878

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論