2016講彈性力學(xué)試題及答案1_第1頁
2016講彈性力學(xué)試題及答案1_第2頁
2016講彈性力學(xué)試題及答案1_第3頁
2016講彈性力學(xué)試題及答案1_第4頁
2016講彈性力學(xué)試題及答案1_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

PAGEPAGE42012年度彈性力學(xué)與有限元分析復(fù)習(xí)題及其答案一、填空題1、彈性力學(xué)研究彈性體由于受外力作用、邊界約束或溫度改變等原因而發(fā)生的應(yīng)力、形變和位移。2、在彈性力學(xué)中規(guī)定,線應(yīng)變以伸長時為正,縮短時為負(fù),與正應(yīng)力的正負(fù)號規(guī)定相適應(yīng)。3、在彈性力學(xué)中規(guī)定,切應(yīng)變以直角變小時為正,變大時為負(fù),與切應(yīng)力的正負(fù)號規(guī)定相適應(yīng)。4、物體受外力以后,其內(nèi)部將發(fā)生內(nèi)力,它的集度稱為應(yīng)力。與物體的形變和材料強(qiáng)度直接有關(guān)的,是應(yīng)力在其作用截面的法線方向和切線方向的分量,也就是正應(yīng)力和切應(yīng)力。應(yīng)力及其分量的量綱是L-1MT-2。5、彈性力學(xué)的基本假定為連續(xù)性、完全彈性、均勻性、各向同性。6、平面問題分為平面應(yīng)力問題和平面應(yīng)變問題。10、在彈性力學(xué)里分析問題,要考慮靜力學(xué)、幾何學(xué)和物理學(xué)三方面條件,分別建立三套方程。11、表示應(yīng)力分量與體力分量之間關(guān)系的方程為平衡微分方程。12、邊界條件表示邊界上位移與約束,或應(yīng)力與面力之間的關(guān)系式。分為位移邊界條件、應(yīng)力邊界條件和混合邊界條件。13、按應(yīng)力求解平面問題時常采用逆解法和半逆解法。2、平面問題分為和。平面應(yīng)力問題平面應(yīng)變問題6、在彈性力學(xué)中規(guī)定,切應(yīng)變以時為正,時為負(fù),與的正負(fù)號規(guī)定相適應(yīng)。直角變小變大切應(yīng)力小孔口應(yīng)力集中現(xiàn)象中有兩個特點(diǎn):一是,即孔附近的應(yīng)力遠(yuǎn)大于遠(yuǎn)處的應(yīng)力,或遠(yuǎn)大于無孔時的應(yīng)力。二是,由于孔口存在而引起的應(yīng)力擾動范圍主要集中在距孔邊1.5倍孔口尺寸的范圍內(nèi)??赘浇膽?yīng)力高度集中,應(yīng)力集中的局部性四、分析計(jì)算題1、試寫出無體力情況下平面問題的應(yīng)力分量存在的必要條件,并考慮下列平面問題的應(yīng)力分量是否可能在彈性體中存在。(1),,;(2),,;其中,A,B,C,D,E,F(xiàn)為常數(shù)。解:應(yīng)力分量存在的必要條件是必須滿足下列條件:(1)在區(qū)域內(nèi)的平衡微分方程;(2)在區(qū)域內(nèi)的相容方程;(3)在邊界上的應(yīng)力邊界條件;(4)對于多連體的位移單值條件。(1)此組應(yīng)力分量滿足相容方程。為了滿足平衡微分方程,必須A=-F,D=-E。此外還應(yīng)滿足應(yīng)力邊界條件。(2)為了滿足相容方程,其系數(shù)必須滿足A+B=0;為了滿足平衡微分方程,其系數(shù)必須滿足A=B=-C/2。上兩式是矛盾的,因此,此組應(yīng)力分量不可能存在。2、已知應(yīng)力分量,,,體力不計(jì),Q為常數(shù)。試?yán)闷胶馕⒎址匠糖笙禂?shù)C1,C2,C3。解:將所給應(yīng)力分量代入平衡微分方程得即由x,y的任意性,得由此解得,,,4、試寫出平面問題的應(yīng)變分量存在的必要條件,并考慮下列平面問題的應(yīng)變分量是否可能存在。(1),,;可見,在左右兩邊分別受有向下和向上的均布面力a,而在上下兩邊分別受有向右和向左的均布面力a。因此,應(yīng)力函數(shù)能解決矩形板受均布剪力的問題。7、如圖所示的矩形截面的長堅(jiān)柱,密度為,在一邊側(cè)面上受均布剪力,試求應(yīng)力分量。OOxybqg解:根據(jù)結(jié)構(gòu)的特點(diǎn)和受力情況,可以假定縱向纖維互不擠壓,即設(shè)。由此可知將上式對y積分兩次,可得如下應(yīng)力函數(shù)表達(dá)式將上式代入應(yīng)力函數(shù)所應(yīng)滿足的相容方程則可得這是y的線性方程,但相容方程要求它有無數(shù)多的解(全柱內(nèi)的y值都應(yīng)該滿足它),可見它的系數(shù)和自由項(xiàng)都應(yīng)該等于零,即,這兩個方程要求,代入應(yīng)力函數(shù)表達(dá)式,并略去對應(yīng)力分量無影響的一次項(xiàng)和常數(shù)項(xiàng)后,便得對應(yīng)應(yīng)力分量為以上常數(shù)可以根據(jù)邊界條件確定。左邊,,,,沿y方向無面力,所以有右邊,,,,沿y方向的面力為q,所以有上邊,,,,沒有水平面力,這就要求在這部分邊界上合成的主矢量和主矩均為零,即將的表達(dá)式代入,并考慮到C=0,則有而自然滿足。又由于在這部分邊界上沒有垂直面力,這就要求在這部分邊界上合成的主矢量和主矩均為零,即,將的表達(dá)式代入,則有由此可得,,,,應(yīng)力分量為,,雖然上述結(jié)果并不嚴(yán)格滿足上端面處(y=0)的邊界條件,但按照圣維南原理,在稍遠(yuǎn)離y=0處這一結(jié)果應(yīng)是適用的。9、如圖所示三角形懸臂梁只受重力作用,而梁的密度為,試用純?nèi)蔚膽?yīng)力函數(shù)求解。OOxyg解:純?nèi)蔚膽?yīng)力函數(shù)為相應(yīng)的應(yīng)力分量表達(dá)式為,,這些應(yīng)力分量是滿足平衡微分方程和相容方程的?,F(xiàn)在來考察,如果適當(dāng)選擇各個系數(shù),是否能滿足應(yīng)力邊界條件。上邊,,,,沒有水平面力,所以有對上端面的任意x值都應(yīng)成立,可見同時,該邊界上沒有豎直面力,所以有對上端面的任意x值都應(yīng)成立,可見因此,應(yīng)力分量可以簡化為,,斜面,,,,沒有面力,所以有由第一個方程,得對斜面的任意x值都應(yīng)成立,這就要求由第二個方程,得對斜面的任意x值都應(yīng)成立,這就要求(1分)由此解得(1分),從而應(yīng)力分量為,,設(shè)三角形懸臂梁的長為l,高為h,則。根據(jù)力的平衡,固定端對梁的約束反力沿x方向的分量為0,沿y方向的分量為。因此,所求在這部分邊界上合成的主矢應(yīng)為零,應(yīng)當(dāng)合成為反力。可見,所求應(yīng)力分量滿足梁固定端的邊界條件。10、設(shè)有楔形體如圖所示,左面鉛直,右面與鉛直面成角,下端作為無限長,承受重力及液體壓力,楔形體的密度為,液體的密度為,試求應(yīng)力分量。2g1gyxO解:采用半逆解法。首先應(yīng)用量綱分析方法來假設(shè)應(yīng)力分量的函數(shù)形式。取坐標(biāo)軸如圖所示。在楔形體的任意一點(diǎn),每一個應(yīng)力分量都將由兩部分組成:一部分由重力引起,應(yīng)當(dāng)與成正比(g是重力加速度);另一部分由液體壓力引起,應(yīng)當(dāng)與成正比。此外,每一部分還與,x,y有關(guān)。由于應(yīng)力的量綱是L-1MT-2,和的量綱是L-2MT-2,是量綱一的量,而x和y的量綱是L,因此,如果應(yīng)力分量具有多項(xiàng)式的解答,那么它們的表達(dá)式只可能是,,,四項(xiàng)的組合,而其中的A,B,C,D是量綱一的量,只與有關(guān)。這就是說,各應(yīng)力分量的表達(dá)式只可能是x和y的純一次式。其次,由應(yīng)力函數(shù)與應(yīng)力分量的關(guān)系式可知,應(yīng)力函數(shù)比應(yīng)力分量的長度量綱高二次,應(yīng)該是x和y純?nèi)问?,因此,假設(shè)相應(yīng)的應(yīng)力分量表達(dá)式為,,這些應(yīng)力分量是滿足平衡微分方程和相容方程的。現(xiàn)在來考察,如果適當(dāng)選擇各個系數(shù),是否能滿足應(yīng)力邊界條件。左面,,,,作用有水平面力,所以有對左面的任意y值都應(yīng)成立,可見同時,該邊界上沒有豎直面力,所以有對左面的任意y值都應(yīng)成立,可見因此,應(yīng)力分量可以簡化為,,斜面,,,,沒有面力,所以有由第一個方程,得對斜面的任意y值都應(yīng)成立,這就要求由第二個方程,得對斜面的任意x值都應(yīng)成立,這就要求由此解得,從而應(yīng)力分量為,,1.圖示半無限平面體在邊界上受有兩等值反向,間距為d的集中力作用,單位寬度上集中力的值為P,設(shè)間距d很小。試求其應(yīng)力分量,并討論所求解的適用范圍。(提示:取應(yīng)力函數(shù)為)(13分)題三(1)圖解:很小,,可近似視為半平面體邊界受一集中力偶M的情形。將應(yīng)力函數(shù)代入,可求得應(yīng)力分量:;;邊界條件:(1);代入應(yīng)力分量式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論