2022-2023學年陜西省安康市旬陽縣中考四模數(shù)學試題含解析_第1頁
2022-2023學年陜西省安康市旬陽縣中考四模數(shù)學試題含解析_第2頁
2022-2023學年陜西省安康市旬陽縣中考四模數(shù)學試題含解析_第3頁
2022-2023學年陜西省安康市旬陽縣中考四模數(shù)學試題含解析_第4頁
2022-2023學年陜西省安康市旬陽縣中考四模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖所示的兩個四邊形相似,則α的度數(shù)是()A.60° B.75° C.87° D.120°2.若點A(a,b),B(,c)都在反比例函數(shù)y=的圖象上,且﹣1<c<0,則一次函數(shù)y=(b﹣c)x+ac的大致圖象是()A. B.C. D.3.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點A,B,C.現(xiàn)有下面四個推斷:①拋物線開口向下;②當x=-2時,y取最大值;③當m<4時,關(guān)于x的一元二次方程ax2+bx+c=m必有兩個不相等的實數(shù)根;④直線y=kx+c(k≠0)經(jīng)過點A,C,當kx+c>ax2+bx+c時,x的取值范圍是-4<x<0;其中推斷正確的是()A.①② B.①③ C.①③④ D.②③④4.在平面直角坐標系中,函數(shù)的圖象經(jīng)過()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限5.下列圖形中,哪一個是圓錐的側(cè)面展開圖?A. B. C. D.6.如圖,在RtΔABC中,AB=9,BC=6,∠B=90°,將ΔABC折疊,使A點與BC的中點D重合,折痕為MN,則線段BN的長為()A.52 B.53 C.47.左下圖是一些完全相同的小正方體搭成的幾何體的三視圖.這個幾何體只能是()A. B. C. D.8.如圖,在Rt△ABC中,∠B=90o,AB=6,BC=8,點D在BC上,以AC為對角線的所有□ADCE中,DE的最小值是(

)A.4 B.6 C.8 D.109.一組數(shù)據(jù)8,3,8,6,7,8,7的眾數(shù)和中位數(shù)分別是()A.8,6B.7,6C.7,8D.8,710.如圖,在平面直角坐標系xOy中,點C,B,E在y軸上,Rt△ABC經(jīng)過變化得到Rt△EDO,若點B的坐標為(0,1),OD=2,則這種變化可以是()A.△ABC繞點C順時針旋轉(zhuǎn)90°,再向下平移5個單位長度B.△ABC繞點C逆時針旋轉(zhuǎn)90°,再向下平移5個單位長度C.△ABC繞點O順時針旋轉(zhuǎn)90°,再向左平移3個單位長度D.△ABC繞點O逆時針旋轉(zhuǎn)90°,再向右平移1個單位長度11.在下面的四個幾何體中,左視圖與主視圖不相同的幾何體是()A. B. C. D.12.如圖,在矩形ABCD中,對角線AC,BD相交于點O,AE⊥BD,垂足為E,AE=3,ED=3BE,則AB的值為()A.6 B.5 C.2 D.3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.一組數(shù)據(jù)7,9,8,7,9,9,8的中位數(shù)是__________14.如圖,一次函數(shù)y=x﹣2的圖象與反比例函數(shù)y=(k>0)的圖象相交于A、B兩點,與x軸交與點C,若tan∠AOC=,則k的值為_____.15.對于實數(shù)x,我們規(guī)定[x]表示不大于x的最大整數(shù),例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[]=5,則x的取值范圍是_____.16.如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是_________.17.如圖,四邊形ABCD是菱形,∠DAB=50°,對角線AC,BD相交于點O,DH⊥AB于H,連接OH,則∠DHO=_____度.18.如圖,已知直線與軸、軸相交于、兩點,與的圖象相交于、兩點,連接、.給出下列結(jié)論:①;②;③;④不等式的解集是或.其中正確結(jié)論的序號是__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某小學學生較多,為了便于學生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個,食堂師傅在窗口隨機發(fā)放(發(fā)放的食品價格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.按約定,“小李同學在該天早餐得到兩個油餅”是事件;(可能,必然,不可能)請用列表或樹狀圖的方法,求出小張同學該天早餐剛好得到豬肉包和油餅的概率.20.(6分)如圖,在平面直角坐標系xOy中,已知正比例函數(shù)與一次函數(shù)的圖像交于點A,(1)求點A的坐標;(2)設x軸上一點P(a,0),過點P作x軸的垂線(垂線位于點A的右側(cè)),分別交和的圖像于點B、C,連接OC,若BC=OA,求△OBC的面積.21.(6分)先化簡,,其中x=.22.(8分)先化簡,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣23.(8分)如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點P,OF∥BC交AC于AC點E,交PC于點F,連接AF(1)判斷AF與⊙O的位置關(guān)系并說明理由;(2)若⊙O的半徑為4,AF=3,求AC的長.24.(10分)先化簡,再求值:(x﹣2﹣)÷,其中x=.25.(10分)某校檢測學生跳繩水平,抽樣調(diào)查了部分學生的“1分鐘跳繩”成績,并制成了下面的頻數(shù)分布直方圖(每小組含最小值,不含最大值)和扇形圖(1)D組的人數(shù)是人,補全頻數(shù)分布直方圖,扇形圖中m=;(2)本次調(diào)查數(shù)據(jù)中的中位數(shù)落在組;(3)如果“1分鐘跳繩”成績大于或等于120次為優(yōu)秀,那么該校4500名學生中“1分鐘跳繩”成績?yōu)閮?yōu)秀的大約有多少人?26.(12分)計算:sin30°﹣+(π﹣4)0+|﹣|.27.(12分)在一次數(shù)學活動課上,老師讓同學們到操場上測量旗桿的高度,然后回來交流各自的測量方法.小芳的測量方法是:拿一根高3.5米的竹竿直立在離旗桿27米的C處(如圖),然后沿BC方向走到D處,這時目測旗桿頂部A與竹竿頂部E恰好在同一直線上,又測得C、D兩點的距離為3米,小芳的目高為1.5米,這樣便可知道旗桿的高.你認為這種測量方法是否可行?請說明理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】【分析】根據(jù)相似多邊形性質(zhì):對應角相等.【詳解】由已知可得:α的度數(shù)是:360?-60?-75?-138?=87?故選C【點睛】本題考核知識點:相似多邊形.解題關(guān)鍵點:理解相似多邊形性質(zhì).2、D【解析】

將,代入,得,,然后分析與的正負,即可得到的大致圖象.【詳解】將,代入,得,,即,.∴.∵,∴,∴.即與異號.∴.又∵,故選D.【點睛】本題考查了反比例函數(shù)圖像上點的坐標特征,一次函數(shù)的圖像與性質(zhì),得出與的正負是解答本題的關(guān)鍵.3、B【解析】

結(jié)合函數(shù)圖象,利用二次函數(shù)的對稱性,恰當使用排除法,以及根據(jù)函數(shù)圖象與不等式的關(guān)系可以得出正確答案.【詳解】解:①由圖象可知,拋物線開口向下,所以①正確;

②若當x=-2時,y取最大值,則由于點A和點B到x=-2的距離相等,這兩點的縱坐標應該相等,但是圖中點A和點B的縱坐標顯然不相等,所以②錯誤,從而排除掉A和D;

剩下的選項中都有③,所以③是正確的;

易知直線y=kx+c(k≠0)經(jīng)過點A,C,當kx+c>ax2+bx+c時,x的取值范圍是x<-4或x>0,從而④錯誤.故選:B.【點睛】本題考查二次函數(shù)的圖象,二次函數(shù)的對稱性,以及二次函數(shù)與一元二次方程,二次函數(shù)與不等式的關(guān)系,屬于較復雜的二次函數(shù)綜合選擇題.4、A【解析】【分析】一次函數(shù)y=kx+b的圖象經(jīng)過第幾象限,取決于k和b.當k>0,b>O時,圖象過一、二、三象限,據(jù)此作答即可.【詳解】∵一次函數(shù)y=3x+1的k=3>0,b=1>0,∴圖象過第一、二、三象限,故選A.【點睛】一次函數(shù)y=kx+b的圖象經(jīng)過第幾象限,取決于x的系數(shù)和常數(shù)項.5、B【解析】

根據(jù)圓錐的側(cè)面展開圖的特點作答.【詳解】A選項:是長方體展開圖.B選項:是圓錐展開圖.C選項:是棱錐展開圖.D選項:是正方體展開圖.故選B.【點睛】考查了幾何體的展開圖,注意圓錐的側(cè)面展開圖是扇形.6、C【解析】

設BN=x,則由折疊的性質(zhì)可得DN=AN=9-x,根據(jù)中點的定義可得BD=3,在Rt△BND中,根據(jù)勾股定理可得關(guān)于x的方程,解方程即可求解.【詳解】設BN=x,則AN=9-x.由折疊的性質(zhì),得DN=AN=9-x.因為點D是BC的中點,所以BD=3.在RtΔNBD中,由勾股定理,得BN即x2解得x=4,故線段BN的長為4.故選C.【點睛】此題考查了折疊的性質(zhì),勾股定理,中點的定義以及方程思想,熟練掌握折疊的性質(zhì)及勾股定理是解答本題的關(guān)鍵.7、A【解析】試題分析:根據(jù)幾何體的主視圖可判斷C不合題意;根據(jù)左視圖可得B、D不合題意,因此選項A正確,故選A.考點:幾何體的三視圖8、B【解析】

平行四邊形ADCE的對角線的交點是AC的中點O,當OD⊥BC時,OD最小,即DE最小,根據(jù)三角形中位線定理即可求解.【詳解】平行四邊形ADCE的對角線的交點是AC的中點O,當OD⊥BC時,OD最小,即DE最小。∵OD⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位線,∴OD=AB=3,∴DE=2OD=6.故選:B.【點睛】本題考查了平行四邊形的性質(zhì),解題的關(guān)鍵是利用三角形中位線定理進行求解.9、D【解析】試題分析:根據(jù)中位數(shù)和眾數(shù)的定義分別進行解答即可.把這組數(shù)據(jù)從小到大排列:3,6,7,7,8,8,8,8出現(xiàn)了3次,出現(xiàn)的次數(shù)最多,則眾數(shù)是8;最中間的數(shù)是7,則這組數(shù)據(jù)的中位數(shù)是7考點:(1)眾數(shù);(2)中位數(shù).10、C【解析】

Rt△ABC通過變換得到Rt△ODE,應先旋轉(zhuǎn)然后平移即可【詳解】∵Rt△ABC經(jīng)過變化得到Rt△EDO,點B的坐標為(0,1),OD=2,∴DO=BC=2,CO=3,∴將△ABC繞點C順時針旋轉(zhuǎn)90°,再向下平移3個單位長度,即可得到△DOE;或?qū)ⅰ鰽BC繞點O順時針旋轉(zhuǎn)90°,再向左平移3個單位長度,即可得到△DOE;故選:C.【點睛】本題考查的是坐標與圖形變化旋轉(zhuǎn)和平移的知識,解題的關(guān)鍵在于利用旋轉(zhuǎn)和平移的概念和性質(zhì)求坐標的變化11、B【解析】

由幾何體的三視圖知識可知,主視圖、左視圖是分別從物體正面、左面看所得到的圖形,細心觀察即可求解.【詳解】A、正方體的左視圖與主視圖都是正方形,故A選項不合題意;B、長方體的左視圖與主視圖都是矩形,但是矩形的長寬不一樣,故B選項與題意相符;C、球的左視圖與主視圖都是圓,故C選項不合題意;D、圓錐左視圖與主視圖都是等腰三角形,故D選項不合題意;故選B.【點睛】本題主要考查了幾何題的三視圖,解題關(guān)鍵是能正確畫出幾何體的三視圖.12、C【解析】

由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易證得△OAB是等邊三角形,繼而求得∠BAE的度數(shù),由△OAB是等邊三角形,求出∠ADE的度數(shù),又由AE=3,即可求得AB的長.【詳解】∵四邊形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等邊三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB=,故選C.【點睛】此題考查了矩形的性質(zhì)、等邊三角形的判定與性質(zhì)以及含30°角的直角三角形的性質(zhì),結(jié)合已知條件和等邊三角形的判定方法證明△OAB是等邊三角形是解題關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】

將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù),據(jù)此可得.【詳解】解:將數(shù)據(jù)重新排列為7、7、1、1、9、9、9,所以這組數(shù)據(jù)的中位數(shù)為1,故答案為1.【點睛】本題主要考查中位數(shù),解題的關(guān)鍵是掌握中位數(shù)的定義.14、1【解析】【分析】如圖,過點A作AD⊥x軸,垂足為D,根據(jù)題意設出點A的坐標,然后根據(jù)一次函數(shù)y=x﹣2的圖象與反比例函數(shù)y=(k>0)的圖象相交于A、B兩點,可以求得a的值,進而求得k的值即可.【詳解】如圖,過點A作AD⊥x軸,垂足為D,∵tan∠AOC==,∴設點A的坐標為(1a,a),∵一次函數(shù)y=x﹣2的圖象與反比例函數(shù)y=(k>0)的圖象相交于A、B兩點,∴a=1a﹣2,得a=1,∴1=,得k=1,故答案為:1.【點睛】本題考查了正切,反比例函數(shù)與一次函數(shù)的交點問題,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.15、11≤x<1【解析】

根據(jù)對于實數(shù)x我們規(guī)定[x]不大于x最大整數(shù),可得答案.【詳解】由[]=5,得:,解得11≤x<1,故答案是:11≤x<1.【點睛】考查了解一元一次不等式組,利用[x]不大于x最大整數(shù)得出不等式組是解題關(guān)鍵.16、【解析】

由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性質(zhì),即可求得PE的值,繼而求得OP的長,然后由直角三角形斜邊上的中線等于斜邊的一半,即可求得DM的長.【詳解】∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴∴∴∵PD⊥OA,點M是OP的中點,∴故答案為:【點睛】此題考查了等腰三角形的性質(zhì)與判定、含30°直角三角形的性質(zhì)以及直角三角形斜邊的中線的性質(zhì).此題難度適中,屬于中考常見題型,求出OP的長是解題關(guān)鍵.17、1.【解析】試題分析:∵四邊形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO=×50°=1°.考點:菱形的性質(zhì).18、②③④【解析】分析:根據(jù)一次函數(shù)和反比例函數(shù)的性質(zhì)得到k1k2>0,故①錯誤;把A(-2,m)、B(1,n)代入y=中得到-2m=n故②正確;把A(-2,m)、B(1,n)代入y=k1x+b得到y(tǒng)=-mx-m,求得P(-1,0),Q(0,-m),根據(jù)三角形的面積公式即可得到S△AOP=S△BOQ;故③正確;根據(jù)圖象得到不等式k1x+b>的解集是x<-2或0<x<1,故④正確.詳解:由圖象知,k1<0,k2<0,∴k1k2>0,故①錯誤;把A(-2,m)、B(1,n)代入y=中得-2m=n,∴m+n=0,故②正確;把A(-2,m)、B(1,n)代入y=k1x+b得,∴,∵-2m=n,∴y=-mx-m,∵已知直線y=k1x+b與x軸、y軸相交于P、Q兩點,∴P(-1,0),Q(0,-m),∴OP=1,OQ=m,∴S△AOP=m,S△BOQ=m,∴S△AOP=S△BOQ;故③正確;由圖象知不等式k1x+b>的解集是x<-2或0<x<1,故④正確;故答案為:②③④.點睛:本題考查了反比例函數(shù)與一次函數(shù)的交點,求兩直線的交點坐標,三角形面積的計算,正確的理解題意是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)不可能事件;(2).【解析】

試題分析:(1)根據(jù)隨機事件的概念即可得“小李同學在該天早餐得到兩個油餅”是不可能事件;(2)根據(jù)題意畫出樹狀圖,再由概率公式求解即可.試題解析:(1)小李同學在該天早餐得到兩個油餅”是不可能事件;(2)樹狀圖法即小張同學得到豬肉包和油餅的概率為.考點:列表法與樹狀圖法.20、(1)A(4,3);(2)28.【解析】

(1)點A是正比例函數(shù)與一次函數(shù)圖像的交點坐標,把與聯(lián)立組成方程組,方程組的解就是點A的橫縱坐標;(2)過點A作x軸的垂線,在Rt△OAD中,由勾股定理求得OA的長,再由BC=OA求得OB的長,用點P的橫坐標a表示出點B、C的坐標,利用BC的長求得a值,根據(jù)即可求得△OBC的面積.【詳解】解:(1)由題意得:,解得,∴點A的坐標為(4,3).(2)過點A作x軸的垂線,垂足為D,在Rt△OAD中,由勾股定理得,∴.∵P(a,0),∴B(a,),C(a,-a+7),∴BC=,∴,解得a=8.∴.21、【解析】

根據(jù)分式的化簡方法先通分再約分,然后帶入求值.【詳解】解:當時,.【點睛】此題重點考查學生對分式的化簡的應用,掌握分式的化簡方法是解題的關(guān)鍵.22、【解析】

原式去括號合并得到最簡結(jié)果,把a與b的值代入計算即可求出值;【詳解】解:原式=a2﹣3ab+a2+2ab+b2﹣a2+ab=a2+b2,當a=1、b=﹣時,原式=12+(﹣)2=1+=.【點睛】考查了整式的加減-化簡求值,以及非負數(shù)的性質(zhì),熟練掌握運算法則是解本題的關(guān)鍵.23、解:(1)AF與圓O的相切.理由為:如圖,連接OC,∵PC為圓O切線,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF為圓O的切線,即AF與⊙O的位置關(guān)系是相切.(2)∵△AOF≌△COF,∴∠AOF=∠COF.∵OA=OC,∴E為AC中點,即AE=CE=AC,OE⊥AC.∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根據(jù)勾股定理得:OF=1.∵S△AOF=?OA?AF=?OF?AE,∴AE=.∴AC=2AE=.【解析】試題分析:(1)連接OC,先證出∠3=∠2,由SAS證明△OAF≌△OCF,得對應角相等∠OAF=∠OCF,再根據(jù)切線的性質(zhì)得出∠OCF=90°,證出∠OAF=90°,即可得出結(jié)論;(2)先由勾股定理求出OF,再由三角形的面積求出AE,根據(jù)垂徑定理得出AC=2AE.試題解析:(1)連接OC,如圖所示:∵AB是⊙O直徑,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切線,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切線;(2)∵⊙O的半徑為4,AF=3,∠OAF=90°,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論