版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福建省永春一中2023屆高三百日沖刺考試數(shù)學(xué)試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.黨的十九大報告明確提出:在共享經(jīng)濟(jì)等領(lǐng)域培育增長點、形成新動能.共享經(jīng)濟(jì)是公眾將閑置資源通過社會化平臺與他人共享,進(jìn)而獲得收入的經(jīng)濟(jì)現(xiàn)象.為考察共享經(jīng)濟(jì)對企業(yè)經(jīng)濟(jì)活躍度的影響,在四個不同的企業(yè)各取兩個部門進(jìn)行共享經(jīng)濟(jì)對比試驗,根據(jù)四個企業(yè)得到的試驗數(shù)據(jù)畫出如下四個等高條形圖,最能體現(xiàn)共享經(jīng)濟(jì)對該部門的發(fā)展有顯著效果的圖形是()A. B.C. D.2.如圖,在正四棱柱中,,分別為的中點,異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且3.已知三點A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點的距離為()A. B.C. D.4.設(shè)等比數(shù)列的前項和為,則“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要5.做拋擲一枚骰子的試驗,當(dāng)出現(xiàn)1點或2點時,就說這次試驗成功,假設(shè)骰子是質(zhì)地均勻的.則在3次這樣的試驗中成功次數(shù)X的期望為()A.13 B.16.已知復(fù)數(shù)(為虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)是()A. B. C. D.7.已知,如圖是求的近似值的一個程序框圖,則圖中空白框中應(yīng)填入A. B.C. D.8.我國古代數(shù)學(xué)名著《九章算術(shù)》有一問題:“今有鱉臑(biēnaò),下廣五尺,無袤;上袤四尺,無廣;高七尺.問積幾何?”該幾何體的三視圖如圖所示,則此幾何體外接球的表面積為()A.平方尺 B.平方尺C.平方尺 D.平方尺9.設(shè)是定義在實數(shù)集上的函數(shù),滿足條件是偶函數(shù),且當(dāng)時,,則,,的大小關(guān)系是()A. B. C. D.10.窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國古老的傳統(tǒng)民間藝術(shù)之一,它歷史悠久,風(fēng)格獨特,神獸人們喜愛.下圖即是一副窗花,是把一個邊長為12的大正方形在四個角處都剪去邊長為1的小正方形后剩余的部分,然后在剩余部分中的四個角處再剪出邊長全為1的一些小正方形.若在這個窗花內(nèi)部隨機(jī)取一個點,則該點不落在任何一個小正方形內(nèi)的概率是()A. B. C. D.11.一個幾何體的三視圖如圖所示,則這個幾何體的體積為()A. B.C. D.12.已知三棱錐的外接球半徑為2,且球心為線段的中點,則三棱錐的體積的最大值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)在的零點個數(shù)為_________.14.在中,角A,B,C的對邊分別為a,b,c,且,則________.15.在邊長為2的正三角形中,,則的取值范圍為______.16.等差數(shù)列(公差不為0),其中,,成等比數(shù)列,則這個等比數(shù)列的公比為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的右頂點為,為上頂點,點為橢圓上一動點.(1)若,求直線與軸的交點坐標(biāo);(2)設(shè)為橢圓的右焦點,過點與軸垂直的直線為,的中點為,過點作直線的垂線,垂足為,求證:直線與直線的交點在橢圓上.18.(12分)已知拋物線的頂點為原點,其焦點關(guān)于直線的對稱點為,且.若點為的準(zhǔn)線上的任意一點,過點作的兩條切線,其中為切點.(1)求拋物線的方程;(2)求證:直線恒過定點,并求面積的最小值.19.(12分)如圖,已知在三棱臺中,,,.(1)求證:;(2)過的平面分別交,于點,,且分割三棱臺所得兩部分幾何體的體積比為,幾何體為棱柱,求的長.提示:臺體的體積公式(,分別為棱臺的上、下底面面積,為棱臺的高).20.(12分)已知函數(shù).(1)若函數(shù)不存在單調(diào)遞減區(qū)間,求實數(shù)的取值范圍;(2)若函數(shù)的兩個極值點為,,求的最小值.21.(12分)已知函數(shù).(1)若,,求函數(shù)的單調(diào)區(qū)間;(2)時,若對一切恒成立,求a的取值范圍.22.(10分)已知是等差數(shù)列,滿足,,數(shù)列滿足,,且是等比數(shù)列.(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)四個列聯(lián)表中的等高條形圖可知,圖中D中共享與不共享的企業(yè)經(jīng)濟(jì)活躍度的差異最大,它最能體現(xiàn)共享經(jīng)濟(jì)對該部門的發(fā)展有顯著效果,故選D.2、B【解析】
連接,,,,由正四棱柱的特征可知,再由平面的基本性質(zhì)可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設(shè),則,則,,,由余弦定理,得.故選:B【點睛】本題主要考查異面直線的定義及所成的角和平面的基本性質(zhì),還考查了推理論證和運算求解的能力,屬于中檔題.3、B【解析】
選B.考點:圓心坐標(biāo)4、A【解析】
首先根據(jù)等比數(shù)列分別求出滿足,的基本量,根據(jù)基本量的范圍即可確定答案.【詳解】為等比數(shù)列,若成立,有,因為恒成立,故可以推出且,若成立,當(dāng)時,有,當(dāng)時,有,因為恒成立,所以有,故可以推出,,所以“”是“”的充分不必要條件.故選:A.【點睛】本題主要考查了等比數(shù)列基本量的求解,充分必要條件的集合關(guān)系,屬于基礎(chǔ)題.5、C【解析】
每一次成功的概率為p=26=【詳解】每一次成功的概率為p=26=13故選:C.【點睛】本題考查了二項分布求數(shù)學(xué)期望,意在考查學(xué)生的計算能力和應(yīng)用能力.6、A【解析】
直接利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,求得的坐標(biāo)得出答案.【詳解】解:,在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)是.故選:A.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.7、C【解析】
由于中正項與負(fù)項交替出現(xiàn),根據(jù)可排除選項A、B;執(zhí)行第一次循環(huán):,①若圖中空白框中填入,則,②若圖中空白框中填入,則,此時不成立,;執(zhí)行第二次循環(huán):由①②均可得,③若圖中空白框中填入,則,④若圖中空白框中填入,則,此時不成立,;執(zhí)行第三次循環(huán):由③可得,符合題意,由④可得,不符合題意,所以圖中空白框中應(yīng)填入,故選C.8、A【解析】
根據(jù)三視圖得出原幾何體的立體圖是一個三棱錐,將三棱錐補充成一個長方體,此長方體的外接球就是該三棱錐的外接球,由球的表面積公式計算可得選項.【詳解】由三視圖可得,該幾何體是一個如圖所示的三棱錐,為三棱錐外接球的球心,此三棱錐的外接球也是此三棱錐所在的長方體的外接球,所以為的中點,設(shè)球半徑為,則,所以外接球的表面積,故選:A.【點睛】本題考查求幾何體的外接球的表面積,關(guān)鍵在于由幾何體的三視圖得出幾何體的立體圖,找出外接球的球心位置和半徑,屬于中檔題.9、C【解析】∵y=f(x+1)是偶函數(shù),∴f(-x+1)=f(x+1),即函數(shù)f(x)關(guān)于x=1對稱.
∵當(dāng)x≥1時,為減函數(shù),∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,
故選C10、D【解析】
由幾何概型可知,概率應(yīng)為非小正方形面積與窗花面積的比,即可求解.【詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D【點睛】本題考查幾何概型的面積公式的應(yīng)用,屬于基礎(chǔ)題.11、B【解析】
還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結(jié)果.【詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:【點睛】本題考查三視圖的還原、組合體體積的求解問題,關(guān)鍵在于能夠準(zhǔn)確還原幾何體,從而分別求解各部分的體積.12、C【解析】
由題可推斷出和都是直角三角形,設(shè)球心為,要使三棱錐的體積最大,則需滿足,結(jié)合幾何關(guān)系和圖形即可求解【詳解】先畫出圖形,由球心到各點距離相等可得,,故是直角三角形,設(shè),則有,又,所以,當(dāng)且僅當(dāng)時,取最大值4,要使三棱錐體積最大,則需使高,此時,故選:C【點睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
本問題轉(zhuǎn)化為曲線交點個數(shù)問題,在同一直角坐標(biāo)系內(nèi),畫出函數(shù)的圖象,利用數(shù)形結(jié)合思想進(jìn)行求解即可.【詳解】問題函數(shù)在的零點個數(shù),可以轉(zhuǎn)化為曲線交點個數(shù)問題.在同一直角坐標(biāo)系內(nèi),畫出函數(shù)的圖象,如下圖所示:由圖象可知:當(dāng)時,兩個函數(shù)只有一個交點.故答案為:1【點睛】本題考查了求函數(shù)的零點個數(shù)問題,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想.14、【解析】
利用正弦定理將邊化角,即可容易求得結(jié)果.【詳解】由正弦定理可知,,即.故答案為:.【點睛】本題考查利用正弦定理實現(xiàn)邊角互化,屬基礎(chǔ)題.15、【解析】
建立直角坐標(biāo)系,依題意可求得,而,,,故可得,且,由此構(gòu)造函數(shù),,利用二次函數(shù)的性質(zhì)即可求得取值范圍.【詳解】建立如圖所示的平面直角坐標(biāo)系,則,,,設(shè),,,,根據(jù),即,,,則,,即,,,則,,所以,,,,,,且,故,設(shè),,易知二次函數(shù)的對稱軸為,故函數(shù)在,上的最大值為,最小值為,故的取值范圍為.故答案為:.【點睛】本題考查平面向量數(shù)量積的坐標(biāo)運算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意通過設(shè)元、消元,將問題轉(zhuǎn)化為元二次函數(shù)的值域問題.16、4【解析】
根據(jù)等差數(shù)列關(guān)系,用首項和公差表示出,解出首項和公差的關(guān)系,即可得解.【詳解】設(shè)等差數(shù)列的公差為,由題意得:,則整理得,,所以故答案為:4【點睛】此題考查等差數(shù)列基本量的計算,涉及等比中項,考查基本計算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】
(1)直接求出直線方程,與橢圓方程聯(lián)立求出點坐標(biāo),從而可得直線方程,得其與軸交點坐標(biāo);(2)設(shè),則,求出直線和的方程,從而求得兩直線的交點坐標(biāo),證明此交點在橢圓上,即此點坐標(biāo)適合橢圓方程.代入驗證即可.注意分和說明.【詳解】解:本題考查直線與橢圓的位置關(guān)系的綜合,(1)由題知,,則.因為,所以,則直線的方程為,聯(lián)立,可得故.則,直線的方程為.令,得,故直線與軸的交點坐標(biāo)為.(2)證明:因為,,所以.設(shè)點,則.設(shè)當(dāng)時,設(shè),則,此時直線與軸垂直,其直線方程為,直線的方程為,即.在方程中,令,得,得交點為,顯然在橢圓上.同理當(dāng)時,交點也在橢圓上.當(dāng)時,可設(shè)直線的方程為,即.直線的方程為,聯(lián)立方程,消去得,化簡并解得.將代入中,化簡得.所以兩直線的交點為.因為,又因為,所以,則,所以點在橢圓上.綜上所述,直線與直線的交點在橢圓上.【點睛】本題考查直線與橢圓相交問題,解題方法是解析幾何的基本方程,求出直線方程,解方程組求出交點坐標(biāo),代入曲線方程驗證點在曲線.本題考查了學(xué)生的運算求解能力.18、(1)(2)見解析,最小值為4【解析】
(1)根據(jù)焦點到直線的距離列方程,求得的值,由此求得拋物線的方程.(2)設(shè)出的坐標(biāo),利用導(dǎo)數(shù)求得切線的方程,由此判斷出直線恒過拋物線焦點.求得三角形面積的表達(dá)式,進(jìn)而求得面積的最小值.【詳解】(1)依題意,解得(負(fù)根舍去)∴拋物線的方程為(2)設(shè)點,由,即,得∴拋物線在點處的切線的方程為,即∵,∴∵點在切線上,①,同理,②綜合①、②得,點的坐標(biāo)都滿足方程.即直線恒過拋物線焦點當(dāng)時,此時,可知:當(dāng),此時直線直線的斜率為,得于是,而把直線代入中消去得,即:當(dāng)時,最小,且最小值為4【點睛】本小題主要考查點到直線的距離公式,考查拋物線方程的求法,考查拋物線的切線方程的求法,考查直線過定點問題,考查拋物線中三角形面積的最值的求法,考查運算求解能力,屬于難題.19、(1)證明見解析;(2)2【解析】
(1)在中,利用勾股定理,證得,又由題設(shè)條件,得到,利用線面垂直的判定定理,證得平面,進(jìn)而得到;(2)設(shè)三棱臺和三棱柱的高都為上、下底面之間的距離為,根據(jù)棱臺的體積公式,列出方程求得,得到,即可求解.【詳解】(1)由題意,在中,,,所以,可得,因為,可得.又由,,平面,所以平面,因為平面,所以.(2)因為,可得,令,,設(shè)三棱臺和三棱柱的高都為上、下底面之間的距離為,則,整理得,即,解得,即,又由,所以.【點睛】本題主要考查了直線與平面垂直的判定與應(yīng)用,以及幾何體的體積公式的應(yīng)用,其中解答中熟記線面位置關(guān)系的判定定理與性質(zhì)定理,以及熟練應(yīng)用幾何體的體積公式進(jìn)行求解是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.20、(1)(2)【解析】分析:(1)先求導(dǎo),再令在上恒成立,得到上恒成立,利用基本不等式得到m的取值范圍.(2)先由得到,再求得,再構(gòu)造函數(shù)再利用導(dǎo)數(shù)求其最小值.詳解:(1)由函數(shù)有意義,則由且不存在單調(diào)遞減區(qū)間,則在上恒成立,上恒成立(2)由知,令,即由有兩個極值點故為方程的兩根,,,則由由,則上單調(diào)遞減,即由知綜上所述,的最小值為.點睛:(1)本題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間和極值,考查利用導(dǎo)數(shù)求函數(shù)的最值,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2)本題的難點有兩個,其一是求出,其二是構(gòu)造函數(shù)再利用導(dǎo)數(shù)求其最小值.21、(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)【解析】
(1)求導(dǎo),根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性關(guān)系即可求出.(2)解法一:分類討論:當(dāng)時,觀察式子可得恒成立;當(dāng)時,利用導(dǎo)數(shù)判斷函數(shù)為單調(diào)遞增,可知;當(dāng)時,令,由,,根據(jù)零點存在性定理可得,進(jìn)而可得在上,單調(diào)遞減,即不滿足題意;解法二:通過分離參數(shù)可知條件等價于恒成立,進(jìn)而記,問題轉(zhuǎn)化為求在上的最小值問題,通過二次求導(dǎo),結(jié)合洛比達(dá)法則計算可得結(jié)論.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人教育產(chǎn)品居間合同范本正規(guī)范4篇
- 二零二五年度車輛抵押貸款監(jiān)管協(xié)議3篇
- 二零二五版幼兒園幼兒體育活動組織與指導(dǎo)合同4篇
- 建筑裝飾設(shè)計合同(2篇)
- 工廠勞務(wù)合同范本(2篇)
- 全新業(yè)務(wù)2025年度融資租賃合同3篇
- 2025年度建筑工地挖掘機(jī)駕駛員勞動合同范本2篇
- 蘑菇水塔施工方案
- AI醫(yī)療應(yīng)用研究模板
- 二零二五年度綠色環(huán)保抹灰材料供應(yīng)承包合同4篇
- 《天潤乳業(yè)營運能力及風(fēng)險管理問題及完善對策(7900字論文)》
- 醫(yī)院醫(yī)學(xué)倫理委員會章程
- xx單位政務(wù)云商用密碼應(yīng)用方案V2.0
- 農(nóng)民專業(yè)合作社財務(wù)報表(三張報表)
- 動土作業(yè)專項安全培訓(xùn)考試試題(帶答案)
- 大學(xué)生就業(yè)指導(dǎo)(高職就業(yè)指導(dǎo)課程 )全套教學(xué)課件
- 死亡病例討論總結(jié)分析
- 第二章 會展的產(chǎn)生與發(fā)展
- 空域規(guī)劃與管理V2.0
- JGT266-2011 泡沫混凝土標(biāo)準(zhǔn)規(guī)范
- 商戶用電申請表
評論
0/150
提交評論