河南省新鄉(xiāng)市第三中學(xué)2023年高三(寒假第4次)質(zhì)量檢測試題數(shù)學(xué)試題科_第1頁
河南省新鄉(xiāng)市第三中學(xué)2023年高三(寒假第4次)質(zhì)量檢測試題數(shù)學(xué)試題科_第2頁
河南省新鄉(xiāng)市第三中學(xué)2023年高三(寒假第4次)質(zhì)量檢測試題數(shù)學(xué)試題科_第3頁
河南省新鄉(xiāng)市第三中學(xué)2023年高三(寒假第4次)質(zhì)量檢測試題數(shù)學(xué)試題科_第4頁
河南省新鄉(xiāng)市第三中學(xué)2023年高三(寒假第4次)質(zhì)量檢測試題數(shù)學(xué)試題科_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河南省新鄉(xiāng)市第三中學(xué)2023年高三(寒假第4次)質(zhì)量檢測試題數(shù)學(xué)試題科請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.博覽會安排了分別標(biāo)有序號為“1號”“2號”“3號”的三輛車,等可能隨機順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設(shè)計兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號”車的概率分別為P1,P2,則()A.P1?P2= B.P1=P2= C.P1+P2= D.P1<P22.若函數(shù)在處有極值,則在區(qū)間上的最大值為()A. B.2 C.1 D.33.將函數(shù)的圖象分別向右平移個單位長度與向左平移(>0)個單位長度,若所得到的兩個圖象重合,則的最小值為()A. B. C. D.4.若變量,滿足,則的最大值為()A.3 B.2 C. D.105.已知函數(shù)的部分圖象如圖所示,則()A. B. C. D.6.設(shè)雙曲線(a>0,b>0)的右焦點為F,右頂點為A,過F作AF的垂線與雙曲線交于B,C兩點,過B,C分別作AC,AB的垂線交于點D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.7.在聲學(xué)中,聲強級(單位:)由公式給出,其中為聲強(單位:).,,那么()A. B. C. D.8.已知點,若點在曲線上運動,則面積的最小值為()A.6 B.3 C. D.9.記的最大值和最小值分別為和.若平面向量、、,滿足,則()A. B.C. D.10.在正方體中,點,,分別為棱,,的中點,給出下列命題:①;②;③平面;④和成角為.正確命題的個數(shù)是()A.0 B.1 C.2 D.311.中國古典樂器一般按“八音”分類.這是我國最早按樂器的制造材料來對樂器進行分類的方法,最先見于《周禮·春官·大師》,分為“金、石、土、革、絲、木、匏(páo)、竹”八音,其中“金、石、木、革”為打擊樂器,“土、匏、竹”為吹奏樂器,“絲”為彈撥樂器.現(xiàn)從“八音”中任取不同的“兩音”,則含有打擊樂器的概率為()A. B. C. D.12.某三棱錐的三視圖如圖所示,則該三棱錐的體積為A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.一個房間的地面是由12個正方形所組成,如圖所示.今想用長方形瓷磚鋪滿地面,已知每一塊長方形瓷磚可以覆蓋兩塊相鄰的正方形,即或,則用6塊瓷磚鋪滿房間地面的方法有_______種.14.某外商計劃在個候選城市中投資個不同的項目,且在同一個城市投資的項目不超過個,則該外商不同的投資方案有____種.15.已知下列命題:①命題“?x0∈R,”的否定是“?x∈R,x2+1<3x”;②已知p,q為兩個命題,若“p∨q”為假命題,則“”為真命題;③“a>2”是“a>5”的充分不必要條件;④“若xy=0,則x=0且y=0”的逆否命題為真命題.其中所有真命題的序號是________.16.實數(shù),滿足約束條件,則的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為.(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程及的直角坐標(biāo)方程;(2)求曲線上的點到距離的取值范圍.18.(12分)(選修4-4:坐標(biāo)系與參數(shù)方程)在平面直角坐標(biāo)系,已知曲線(為參數(shù)),在以原點為極點,軸的非負半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)求曲線的普通方程和直線的直角坐標(biāo)方程;(2)過點且與直線平行的直線交于,兩點,求點到,的距離之積.19.(12分)在直角坐標(biāo)系中,是過定點且傾斜角為的直線;在極坐標(biāo)系(以坐標(biāo)原點為極點,以軸非負半軸為極軸,取相同單位長度)中,曲線的極坐標(biāo)方程為.(1)寫出直線的參數(shù)方程,并將曲線的方程化為直角坐標(biāo)方程;(2)若曲線與直線相交于不同的兩點,求的取值范圍.20.(12分)已知橢圓,直線不過原點且不平行于坐標(biāo)軸,與有兩個交點,,線段的中點為.(Ⅰ)證明:直線的斜率與的斜率的乘積為定值;(Ⅱ)若過點,延長線段與交于點,四邊形能否為平行四邊形?若能,求此時的斜率,若不能,說明理由.21.(12分)在如圖所示的多面體中,四邊形是矩形,梯形為直角梯形,平面平面,且,,.(1)求證:平面.(2)求二面角的大小.22.(10分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為,(為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(Ⅰ)求的極坐標(biāo)方程和的直角坐標(biāo)方程;(Ⅱ)設(shè)分別交于兩點(與原點不重合),求的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

將三輛車的出車可能順序一一列出,找出符合條件的即可.【詳解】三輛車的出車順序可能為:123、132、213、231、312、321方案一坐車可能:132、213、231,所以,P1=;方案二坐車可能:312、321,所以,P1=;所以P1+P2=故選C.【點睛】本題考查了古典概型的概率的求法,常用列舉法得到各種情況下基本事件的個數(shù),屬于基礎(chǔ)題.2、B【解析】

根據(jù)極值點處的導(dǎo)數(shù)為零先求出的值,然后再按照求函數(shù)在連續(xù)的閉區(qū)間上最值的求法計算即可.【詳解】解:由已知得,,,經(jīng)檢驗滿足題意.,.由得;由得或.所以函數(shù)在上遞增,在上遞減,在上遞增.則,,由于,所以在區(qū)間上的最大值為2.故選:B.【點睛】本題考查了導(dǎo)數(shù)極值的性質(zhì)以及利用導(dǎo)數(shù)求函數(shù)在連續(xù)的閉區(qū)間上的最值問題的基本思路,屬于中檔題.3、B【解析】

首先根據(jù)函數(shù)的圖象分別向左與向右平移m,n個單位長度后,所得的兩個圖像重合,那么,利用的最小正周期為,從而求得結(jié)果.【詳解】的最小正周期為,那么(∈),于是,于是當(dāng)時,最小值為,故選B.【點睛】該題考查的是有關(guān)三角函數(shù)的周期與函數(shù)圖象平移之間的關(guān)系,屬于簡單題目.4、D【解析】

畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解最大值即可.【詳解】解:畫出滿足條件的平面區(qū)域,如圖示:如圖點坐標(biāo)分別為,目標(biāo)函數(shù)的幾何意義為,可行域內(nèi)點與坐標(biāo)原點的距離的平方,由圖可知到原點的距離最大,故.故選:D【點睛】本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,屬于中檔題.5、A【解析】

先利用最高點縱坐標(biāo)求出A,再根據(jù)求出周期,再將代入求出φ的值.最后將代入解析式即可.【詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結(jié)合0<φ,∴φ.∴.∴sin.故選:A.【點睛】本題考查三角函數(shù)的據(jù)圖求式問題以及三角函數(shù)的公式變換.據(jù)圖求式問題要注意結(jié)合五點法作圖求解.屬于中檔題.6、A【解析】

由題意,根據(jù)雙曲線的對稱性知在軸上,設(shè),則由得:,因為到直線的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.7、D【解析】

由得,分別算出和的值,從而得到的值.【詳解】∵,∴,∴,當(dāng)時,,∴,當(dāng)時,,∴,∴,故選:D.【點睛】本小題主要考查對數(shù)運算,屬于基礎(chǔ)題.8、B【解析】

求得直線的方程,畫出曲線表示的下半圓,結(jié)合圖象可得位于,結(jié)合點到直線的距離公式和兩點的距離公式,以及三角形的面積公式,可得所求最小值.【詳解】解:曲線表示以原點為圓心,1為半徑的下半圓(包括兩個端點),如圖,直線的方程為,可得,由圓與直線的位置關(guān)系知在時,到直線距離最短,即為,則的面積的最小值為.故選:B.【點睛】本題考查三角形面積最值,解題關(guān)鍵是掌握直線與圓的位置關(guān)系,確定半圓上的點到直線距離的最小值,這由數(shù)形結(jié)合思想易得.9、A【解析】

設(shè)為、的夾角,根據(jù)題意求得,然后建立平面直角坐標(biāo)系,設(shè),,,根據(jù)平面向量數(shù)量積的坐標(biāo)運算得出點的軌跡方程,將和轉(zhuǎn)化為圓上的點到定點距離,利用數(shù)形結(jié)合思想可得出結(jié)果.【詳解】由已知可得,則,,,建立平面直角坐標(biāo)系,設(shè),,,由,可得,即,化簡得點的軌跡方程為,則,則轉(zhuǎn)化為圓上的點與點的距離,,,,轉(zhuǎn)化為圓上的點與點的距離,,.故選:A.【點睛】本題考查和向量與差向量模最值的求解,將向量坐標(biāo)化,將問題轉(zhuǎn)化為圓上的點到定點距離的最值問題是解答的關(guān)鍵,考查化歸與轉(zhuǎn)化思想與數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.10、C【解析】

建立空間直角坐標(biāo)系,利用向量的方法對四個命題逐一分析,由此得出正確命題的個數(shù).【詳解】設(shè)正方體邊長為,建立空間直角坐標(biāo)系如下圖所示,,.①,,所以,故①正確.②,,不存在實數(shù)使,故不成立,故②錯誤.③,,,故平面不成立,故③錯誤.④,,設(shè)和成角為,則,由于,所以,故④正確.綜上所述,正確的命題有個.故選:C【點睛】本小題主要考查空間線線、線面位置關(guān)系的向量判斷方法,考查運算求解能力,屬于中檔題.11、B【解析】

分別求得所有基本事件個數(shù)和滿足題意的基本事件個數(shù),根據(jù)古典概型概率公式可求得結(jié)果.【詳解】從“八音”中任取不同的“兩音”共有種取法;“兩音”中含有打擊樂器的取法共有種取法;所求概率.故選:.【點睛】本題考查古典概型概率問題的求解,關(guān)鍵是能夠利用組合的知識求得基本事件總數(shù)和滿足題意的基本事件個數(shù).12、A【解析】由給定的三視圖可知,該幾何體表示一個底面為一個直角三角形,且兩直角邊分別為和,所以底面面積為高為的三棱錐,所以三棱錐的體積為,故選A.二、填空題:本題共4小題,每小題5分,共20分。13、11【解析】

將圖形中左側(cè)的兩列瓷磚的形狀先確定,再由此進行分類,在每一類里面又分按兩種形狀的瓷磚的數(shù)量進行分類,在其中會有相同元素的排列問題,需用到“縮倍法”.采用分類計數(shù)原理,求得總的方法數(shù).【詳解】(1)先貼如圖這塊瓷磚,然后再貼剩下的部分,按如下分類:5個:,3個,2個:,1個,4個:,(2)左側(cè)兩列如圖貼磚,然后貼剩下的部分:3個:,1個,2個:,綜上,一共有(種).故答案為:11.【點睛】本題考查了分類計數(shù)原理,排列問題,其中涉及到相同元素的排列,用到了“縮倍法”的思想.屬于中檔題.14、60【解析】試題分析:每個城市投資1個項目有種,有一個城市投資2個有種,投資方案共種.考點:排列組合.15、②【解析】命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”,故①錯誤;“p∨q”為假命題說明p假q假,則(p)∧(q)為真命題,故②正確;a>5?a>2,但a>2?/a>5,故“a>2”是“a>5”的必要不充分條件,故③錯誤;因為“若xy=0,則x=0或y=0”,所以原命題為假命題,故其逆否命題也為假命題,故④錯誤.16、10【解析】

畫出可行域,根據(jù)目標(biāo)函數(shù)截距可求.【詳解】解:作出可行域如下:由得,平移直線,當(dāng)經(jīng)過點時,截距最小,最大解得的最大值為10故答案為:10【點睛】考查可行域的畫法及目標(biāo)函數(shù)最大值的求法,基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),.(2)【解析】

(1)根據(jù)直線的參數(shù)方程為(為參數(shù)),消去參數(shù),即可求得的的普通方程,曲線的極坐標(biāo)方程為,利用極坐標(biāo)化直角坐標(biāo)的公式:,即可求得答案;(2)的標(biāo)準方程為,圓心為,半徑為,根據(jù)點到直線距離公式,即可求得答案.【詳解】(1)直線的參數(shù)方程為(為參數(shù)),消去參數(shù)的普通方程為.曲線的極坐標(biāo)方程為,利用極坐標(biāo)化直角坐標(biāo)的公式:的直角坐標(biāo)方程為.(2)的標(biāo)準方程為,圓心為,半徑為圓心到的距離為,點到的距離的取值范圍是.【點睛】本題解題關(guān)鍵是掌握極坐標(biāo)化直角坐標(biāo)的公式和點到直線距離公式,考查了分析能力和計算能力,屬于中檔題.18、(1)曲線:,直線的直角坐標(biāo)方程;(2)1.【解析】試題分析:(1)先根據(jù)三角函數(shù)平方關(guān)系消參數(shù)得曲線化為普通方程,再根據(jù)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)根據(jù)題意設(shè)直線參數(shù)方程,代入C方程,利用參數(shù)幾何意義以及韋達定理得點到,的距離之積試題解析:(1)曲線化為普通方程為:,由,得,所以直線的直角坐標(biāo)方程為.(2)直線的參數(shù)方程為(為參數(shù)),代入化簡得:,設(shè)兩點所對應(yīng)的參數(shù)分別為,則,.19、(1)(為參數(shù)),;(2)【解析】分析:(1)直線的參數(shù)方程為(為參數(shù)),其中表示之間的距離,而極坐標(biāo)方程可化為,從而的直角方程為.(2)設(shè),則,利用在圓上得到滿足的方程,最后利用韋達定理就可求出兩條線段的和.詳解:(1)直線的參數(shù)方程為(為參數(shù)).曲線的極坐標(biāo)方程可化為.把,代入曲線的極坐標(biāo)方程可得,即.(2)把直線的參數(shù)方程為(為參數(shù))代入圓的方程可得:.∵曲線與直線相交于不同的兩點,∴,∴,又,∴.又,.∴,∵,∴,∴.∴的取值范圍是.點睛:(1)直線的參數(shù)方程有多種形式,其中一種為(為直線的傾斜角,是參數(shù)),這樣的參數(shù)方程中的參數(shù)有明確的幾何意義,它表示之間的距離.(2)直角坐標(biāo)方程轉(zhuǎn)為極坐標(biāo)方程的關(guān)鍵是利用公式,而極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程的關(guān)鍵是利用公式,后者也可以把極坐標(biāo)方程變形盡量產(chǎn)生以便轉(zhuǎn)化.20、(Ⅰ)詳見解析;(Ⅱ)能,或.【解析】試題分析:(1)設(shè)直線,直線方程與橢圓方程聯(lián)立,根據(jù)韋達定理求根與系數(shù)的關(guān)系,并表示直線的斜率,再表示;(2)第一步由(Ⅰ)得的方程為.設(shè)點的橫坐標(biāo)為,直線與橢圓方程聯(lián)立求點的坐標(biāo),第二步再整理點的坐標(biāo),如果能構(gòu)成平行四邊形,只需,如果有值,并且滿足,的條件就說明存在,否則不存在.試題解析:解:(1)設(shè)直線,,,.∴由得,∴,.∴直線的斜率,即.即直線的斜率與的斜率的乘積為定值.(2)四邊形能為平行四邊形.∵直線過點,∴不過原點且與有兩個交點的充要條件是,由(Ⅰ)得的方程為.設(shè)點的橫坐標(biāo)為.∴由得,即將點的坐標(biāo)代入直線的方程得,因此.四邊形為平行四邊形當(dāng)且僅當(dāng)線段與線段互相平分,即∴.解得,.∵,,,∴當(dāng)?shù)男甭蕿榛驎r,四邊形為平行四邊形.考點:直線與橢圓的位置關(guān)系的綜合應(yīng)用【一題多解】第一問涉及中點弦,當(dāng)直線與圓錐曲線相交時,點是弦的中點,(1)知道中點坐標(biāo),求直線的斜率,或知道直線斜率求中點坐標(biāo)的關(guān)系,或知道求直線斜率與直線斜率的關(guān)系時,也可以選擇點差法,設(shè),,代入橢圓方程,兩式相減,化簡為,兩邊同時除以得,而,,即得到結(jié)果,(2)對于用坐標(biāo)法來解決

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論