版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
衡中同卷2023屆高考數(shù)學(xué)試題倒計時模擬卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,函數(shù)在區(qū)間上恰有個極值點,則正實數(shù)的取值范圍為()A. B. C. D.2.設(shè)a,b都是不等于1的正數(shù),則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件3.在四面體中,為正三角形,邊長為6,,,,則四面體的體積為()A. B. C.24 D.4.已知雙曲線的焦距是虛軸長的2倍,則雙曲線的漸近線方程為()A. B. C. D.5.已知雙曲線的左、右頂點分別是,雙曲線的右焦點為,點在過且垂直于軸的直線上,當(dāng)?shù)耐饨訄A面積達(dá)到最小時,點恰好在雙曲線上,則該雙曲線的方程為()A. B.C. D.6.曲線在點處的切線方程為()A. B. C. D.7.復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點為則()A. B. C. D.8.已知復(fù)數(shù),則()A. B. C. D.9.如圖,已知平面,,、是直線上的兩點,、是平面內(nèi)的兩點,且,,,,.是平面上的一動點,且直線,與平面所成角相等,則二面角的余弦值的最小值是()A. B. C. D.10.記其中表示不大于x的最大整數(shù),若方程在在有7個不同的實數(shù)根,則實數(shù)k的取值范圍()A. B. C. D.11.山東煙臺蘋果因“果形端正、色澤艷麗、果肉甜脆、香氣濃郁”享譽國內(nèi)外.據(jù)統(tǒng)計,煙臺蘋果(把蘋果近似看成球體)的直徑(單位:)服從正態(tài)分布,則直徑在內(nèi)的概率為()附:若,則,.A.0.6826 B.0.8413 C.0.8185 D.0.954412.若各項均為正數(shù)的等比數(shù)列滿足,則公比()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.連續(xù)2次拋擲一顆質(zhì)地均勻的骰子(六個面上分別標(biāo)有數(shù)字1,2,3,4,5,6的正方體),觀察向上的點數(shù),則事件“點數(shù)之積是3的倍數(shù)”的概率為____.14.設(shè)函數(shù),,其中.若存在唯一的整數(shù)使得,則實數(shù)的取值范圍是_____.15.如圖是一個算法偽代碼,則輸出的的值為_______________.16.設(shè)、、、、是表面積為的球的球面上五點,四邊形為正方形,則四棱錐體積的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點也是橢圓的一個焦點,與的公共弦的長為.(1)求的方程;(2)過點的直線與相交于、兩點,與相交于、兩點,且與同向,設(shè)在點處的切線與軸的交點為,證明:直線繞點旋轉(zhuǎn)時,總是鈍角三角形;(3)為上的動點,、為長軸的兩個端點,過點作的平行線交橢圓于點,過點作的平行線交橢圓于點,請問的面積是否為定值,并說明理由.18.(12分)2019年春節(jié)期間,某超市準(zhǔn)備舉辦一次有獎促銷活動,若顧客一次消費達(dá)到400元則可參加一次抽獎活動,超市設(shè)計了兩種抽獎方案.方案一:一個不透明的盒子中裝有30個質(zhì)地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.方案二:一個不透明的盒子中裝有30個質(zhì)地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎,且顧客有放回地抽取3次.(1)現(xiàn)有兩位顧客均獲得抽獎機會,且都按方案一抽獎,試求這兩位顧客均獲得180元返金券的概率;(2)若某顧客獲得抽獎機會.①試分別計算他選擇兩種抽獎方案最終獲得返金券的數(shù)學(xué)期望;②為了吸引顧客消費,讓顧客獲得更多金額的返金券,該超市應(yīng)選擇哪一種抽獎方案進(jìn)行促銷活動?19.(12分)已知函數(shù)(1)當(dāng)時,求不等式的解集;(2)的圖象與兩坐標(biāo)軸的交點分別為,若三角形的面積大于,求參數(shù)的取值范圍.20.(12分)已知函數(shù)f(x)=ex-x2-kx(其中e為自然對數(shù)的底,k為常數(shù))有一個極大值點和一個極小值點.(1)求實數(shù)k的取值范圍;(2)證明:f(x)的極大值不小于1.21.(12分)在世界讀書日期間,某地區(qū)調(diào)查組對居民閱讀情況進(jìn)行了調(diào)查,獲得了一個容量為200的樣本,其中城鎮(zhèn)居民140人,農(nóng)村居民60人.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民有100人,農(nóng)村居民有30人.(1)填寫下面列聯(lián)表,并判斷能否有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān)?城鎮(zhèn)居民農(nóng)村居民合計經(jīng)常閱讀10030不經(jīng)常閱讀合計200(2)從該地區(qū)城鎮(zhèn)居民中,隨機抽取5位居民參加一次閱讀交流活動,記這5位居民中經(jīng)常閱讀的人數(shù)為,若用樣本的頻率作為概率,求隨機變量的期望.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82822.(10分)設(shè)函數(shù).(1)若恒成立,求整數(shù)的最大值;(2)求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
先利用向量數(shù)量積和三角恒等變換求出,函數(shù)在區(qū)間上恰有個極值點即為三個最值點,解出,,再建立不等式求出的范圍,進(jìn)而求得的范圍.【詳解】解:令,解得對稱軸,,又函數(shù)在區(qū)間恰有個極值點,只需解得.故選:.【點睛】本題考查利用向量的數(shù)量積運算和三角恒等變換與三角函數(shù)性質(zhì)的綜合問題.(1)利用三角恒等變換及輔助角公式把三角函數(shù)關(guān)系式化成或的形式;(2)根據(jù)自變量的范圍確定的范圍,根據(jù)相應(yīng)的正弦曲線或余弦曲線求值域或最值或參數(shù)范圍.2、C【解析】
根據(jù)對數(shù)函數(shù)以及指數(shù)函數(shù)的性質(zhì)求解a,b的范圍,再利用充分必要條件的定義判斷即可.【詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C.【點睛】本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數(shù),對數(shù)不等式的解法,是基礎(chǔ)題.3、A【解析】
推導(dǎo)出,分別取的中點,連結(jié),則,推導(dǎo)出,從而,進(jìn)而四面體的體積為,由此能求出結(jié)果.【詳解】解:在四面體中,為等邊三角形,邊長為6,,,,,,分別取的中點,連結(jié),則,且,,,,平面,平面,,四面體的體積為:.故答案為:.【點睛】本題考查四面體體積的求法,考查空間中線線,線面,面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力.4、A【解析】
根據(jù)雙曲線的焦距是虛軸長的2倍,可得出,結(jié)合,得出,即可求出雙曲線的漸近線方程.【詳解】解:由雙曲線可知,焦點在軸上,則雙曲線的漸近線方程為:,由于焦距是虛軸長的2倍,可得:,∴,即:,,所以雙曲線的漸近線方程為:.故選:A.【點睛】本題考查雙曲線的簡單幾何性質(zhì),以及雙曲線的漸近線方程.5、A【解析】
點的坐標(biāo)為,,展開利用均值不等式得到最值,將點代入雙曲線計算得到答案.【詳解】不妨設(shè)點的坐標(biāo)為,由于為定值,由正弦定理可知當(dāng)取得最大值時,的外接圓面積取得最小值,也等價于取得最大值,因為,,所以,當(dāng)且僅當(dāng),即當(dāng)時,等號成立,此時最大,此時的外接圓面積取最小值,點的坐標(biāo)為,代入可得,.所以雙曲線的方程為.故選:【點睛】本題考查了求雙曲線方程,意在考查學(xué)生的計算能力和應(yīng)用能力.6、A【解析】
將點代入解析式確定參數(shù)值,結(jié)合導(dǎo)數(shù)的幾何意義求得切線斜率,即可由點斜式求的切線方程.【詳解】曲線,即,當(dāng)時,代入可得,所以切點坐標(biāo)為,求得導(dǎo)函數(shù)可得,由導(dǎo)數(shù)幾何意義可知,由點斜式可得切線方程為,即,故選:A.【點睛】本題考查了導(dǎo)數(shù)的幾何意義,在曲線上一點的切線方程求法,屬于基礎(chǔ)題.7、B【解析】
求得復(fù)數(shù),結(jié)合復(fù)數(shù)除法運算,求得的值.【詳解】易知,則.故選:B【點睛】本小題主要考查復(fù)數(shù)及其坐標(biāo)的對應(yīng),考查復(fù)數(shù)的除法運算,屬于基礎(chǔ)題.8、B【解析】
利用復(fù)數(shù)除法、加法運算,化簡求得,再求得【詳解】,故.故選:B【點睛】本小題主要考查復(fù)數(shù)的除法運算、加法運算,考查復(fù)數(shù)的模,屬于基礎(chǔ)題.9、B【解析】
為所求的二面角的平面角,由得出,求出在內(nèi)的軌跡,根據(jù)軌跡的特點求出的最大值對應(yīng)的余弦值【詳解】,,,,同理為直線與平面所成的角,為直線與平面所成的角,又,在平面內(nèi),以為軸,以的中垂線為軸建立平面直角坐標(biāo)系則,設(shè),整理可得:在內(nèi)的軌跡為為圓心,以為半徑的上半圓平面平面,,為二面角的平面角,當(dāng)與圓相切時,最大,取得最小值此時故選【點睛】本題主要考查了二面角的平面角及其求法,方法有:定義法、三垂線定理及其逆定理、找公垂面法、射影公式、向量法等,依據(jù)題目選擇方法求出結(jié)果.10、D【解析】
做出函數(shù)的圖象,問題轉(zhuǎn)化為函數(shù)的圖象在有7個交點,而函數(shù)在上有3個交點,則在上有4個不同的交點,數(shù)形結(jié)合即可求解.【詳解】作出函數(shù)的圖象如圖所示,由圖可知方程在上有3個不同的實數(shù)根,則在上有4個不同的實數(shù)根,當(dāng)直線經(jīng)過時,;當(dāng)直線經(jīng)過時,,可知當(dāng)時,直線與的圖象在上有4個交點,即方程,在上有4個不同的實數(shù)根.故選:D.【點睛】本題考查方程根的個數(shù)求參數(shù),利用函數(shù)零點和方程之間的關(guān)系轉(zhuǎn)化為兩個函數(shù)的交點是解題的關(guān)鍵,運用數(shù)形結(jié)合是解決函數(shù)零點問題的基本思想,屬于中檔題.11、C【解析】
根據(jù)服從的正態(tài)分布可得,,將所求概率轉(zhuǎn)化為,結(jié)合正態(tài)分布曲線的性質(zhì)可求得結(jié)果.【詳解】由題意,,,則,,所以,.故果實直徑在內(nèi)的概率為0.8185.故選:C【點睛】本題考查根據(jù)正態(tài)分布求解待定區(qū)間的概率問題,考查了正態(tài)曲線的對稱性,屬于基礎(chǔ)題.12、C【解析】
由正項等比數(shù)列滿足,即,又,即,運算即可得解.【詳解】解:因為,所以,又,所以,又,解得.故選:C.【點睛】本題考查了等比數(shù)列基本量的求法,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】總事件數(shù)為,目標(biāo)事件:當(dāng)?shù)谝活w骰子為1,2,4,6,具體事件有,共8種;當(dāng)?shù)谝活w骰子為3,6,則第二顆骰子隨便都可以,則有種;所以目標(biāo)事件共20中,所以。14、【解析】
根據(jù)分段函數(shù)的解析式畫出圖像,再根據(jù)存在唯一的整數(shù)使得數(shù)形結(jié)合列出臨界條件滿足的關(guān)系式求解即可.【詳解】解:函數(shù),且畫出的圖象如下:因為,且存在唯一的整數(shù)使得,故與在時無交點,,得;又,過定點又由圖像可知,若存在唯一的整數(shù)使得時,所以,存在唯一的整數(shù)使得所以.根據(jù)圖像可知,當(dāng)時,恒成立.綜上所述,存在唯一的整數(shù)使得,此時故答案為:【點睛】本題主要考查了數(shù)形結(jié)合分析參數(shù)范圍的問題,需要根據(jù)題意分別分析定點右邊的整數(shù)點中為滿足條件的唯一整數(shù),再數(shù)形結(jié)合列出時的不等式求的范圍.屬于難題.15、5【解析】
執(zhí)行循環(huán)結(jié)構(gòu)流程圖,即得結(jié)果.【詳解】執(zhí)行循環(huán)結(jié)構(gòu)流程圖得,結(jié)束循環(huán),輸出.【點睛】本題考查循環(huán)結(jié)構(gòu)流程圖,考查基本分析與運算能力,屬基礎(chǔ)題.16、【解析】
根據(jù)球的表面積求得球的半徑,設(shè)球心到四棱錐底面的距離為,求得四棱錐的表達(dá)式,利用基本不等式求得體積的最大值.【詳解】由已知可得球的半徑,設(shè)球心到四棱錐底面的距離為,棱錐的高為,底面邊長為,的體積,當(dāng)且僅當(dāng)時等號成立.故答案為:【點睛】本小題主要考查球的表面積有關(guān)計算,考查球的內(nèi)接四棱錐體積的最值的求法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析;(3)是,理由見解析.【解析】
(1)根據(jù)兩個曲線的焦點相同,得到,再根據(jù)與的公共弦長為得出,可求出和的值,進(jìn)而可得出曲線的方程;(2)設(shè)點,根據(jù)導(dǎo)數(shù)的幾何意義得到曲線在點處的切線方程,求出點的坐標(biāo),利用向量的數(shù)量積得出,則問題得以證明;(3)設(shè)直線,直線,、、,推導(dǎo)出以及,求出和,通過化簡計算可得出為定值,進(jìn)而可得出結(jié)論.【詳解】(1)由知其焦點的坐標(biāo)為,也是橢圓的一個焦點,,①又與的公共弦的長為,與都關(guān)于軸對稱,且的方程為,由此易知與的公共點的坐標(biāo)為,,②聯(lián)立①②,得,,故的方程為;(2)如圖,,由得,在點處的切線方程為,即,令,得,即,,而,于是,因此是銳角,從而是鈍角.故直線繞點旋轉(zhuǎn)時,總是鈍角三角形;(3)設(shè)直線,直線,、、,則,設(shè)向量和的夾角為,則的面積為,由,可得,同理可得,故有.又,故,則,因此,的面積為定值.【點睛】本題考查了圓錐曲線的和直線的位置與關(guān)系,考查鈍角三角形的判定以及三角形面積為定值的求解,關(guān)鍵是聯(lián)立方程,構(gòu)造方程,利用韋達(dá)定理,以及向量的關(guān)系,得到關(guān)于斜率的方程,計算量大,屬于難題.18、(1)(2)①②第一種抽獎方案.【解析】
(1)方案一中每一次摸到紅球的概率為,每名顧客有放回的抽3次獲180元返金劵的概率為,根據(jù)相互獨立事件的概率可知兩顧客都獲得180元返金劵的概率(2)①分別計算方案一,方案二顧客獲返金卷的期望,方案一列出分布列計算即可,方案二根據(jù)二項分布計算期望即可②根據(jù)①得出結(jié)論.【詳解】(1)選擇方案一,則每一次摸到紅球的概率為設(shè)“每位顧客獲得180元返金劵”為事件A,則所以兩位顧客均獲得180元返金劵的概率(2)①若選擇抽獎方案一,則每一次摸到紅球的概率為,每一次摸到白球的概率為.設(shè)獲得返金劵金額為元,則可能的取值為60,100,140,180.則;;;.所以選擇抽獎方案一,該顧客獲得返金劵金額的數(shù)學(xué)期望為(元)若選擇抽獎方案二,設(shè)三次摸球的過程中,摸到紅球的次數(shù)為,最終獲得返金劵的金額為元,則,故所以選擇抽獎方案二,該顧客獲得返金劵金額的數(shù)學(xué)期望為(元).②即,所以該超市應(yīng)選擇第一種抽獎方案【點睛】本題主要考查了古典概型,相互獨立事件的概率,二項分布,期望,及概率知識在實際問題中的應(yīng)用,屬于中檔題.19、(1)(2)【解析】
(1)當(dāng)時,不等式可化為:,再利用絕對值的意義,分,,討論求解.(2)根據(jù)可得,得到函數(shù)的圖象與兩坐標(biāo)軸的交點坐標(biāo)分別為,再利用三角形面積公式由求解.【詳解】(1)當(dāng)時,不等式可化為:①當(dāng)時,不等式化為,解得:②當(dāng)時,不等式化為,解得:,③當(dāng)時,不等式化為解集為,綜上,不等式的解集為.(2)由題得,所以函數(shù)的圖象與兩坐標(biāo)軸的交點坐標(biāo)分別為,的面積為,由,得(舍),或,所以,參數(shù)的取值范圍是.【點睛】本題主要考查絕對值不等式的解法和絕對值函數(shù)的應(yīng)用,還考查分類討論的思想和運算求解的能力,屬于中檔題.20、(1);(2)見解析【解析】
(1)求出,記,問題轉(zhuǎn)化為方程有兩個不同解,求導(dǎo),研究極值即可得結(jié)果;(2)由(1)知,在區(qū)間上存在極大值點,且,則可求出極大值,記,求導(dǎo),求單調(diào)性,求出極值即可.【詳解】(1),由,記,,由,且時,,單調(diào)遞減,,時,,單調(diào)遞增,,由題意,方程有兩個不同解,所以;(2)解法一:由(1)知,在區(qū)間上存在極大值點,且,所以的極大值為,記,則,因為,所以,所以時,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年水電租賃項目合作協(xié)議-可持續(xù)發(fā)展3篇
- 2025年度別墅樓棟移交協(xié)議書中的個性化服務(wù)承諾4篇
- 二零二五年度基礎(chǔ)設(shè)施代付工程款合作協(xié)議4篇
- 2025年度個人在線教育平臺合作協(xié)議范本4篇
- 2025年度棉被銷售代理合作協(xié)議4篇
- 2025年度山地土地流轉(zhuǎn)承包經(jīng)營合同4篇
- 個性化別墅裝修協(xié)議模板(2024版)版A版
- 二零二五年度石材翻新項目投資風(fēng)險分擔(dān)合同4篇
- 二零二五年度CFG樁基工程施工安全防護(hù)用品供應(yīng)合同3篇
- 2025年度辦公樓租賃合同附公共區(qū)域維護(hù)責(zé)任書3篇
- 銳途管理人員測評試題目的
- 焊接材料-DIN-8555-標(biāo)準(zhǔn)
- 工程索賠真實案例范本
- 重癥醫(yī)學(xué)科運用PDCA循環(huán)降低ICU失禁性皮炎發(fā)生率品管圈QCC持續(xù)質(zhì)量改進(jìn)成果匯報
- 個人股權(quán)證明書
- 醫(yī)院運送工作介紹
- 重癥患者的容量管理
- 學(xué)習(xí)游戲?qū)χ行W(xué)生學(xué)業(yè)成績的影響
- 小學(xué)四年級上冊遞等式計算100題及答案
- 新版?zhèn)€人簡歷Excel表格模板共2聯(lián)
- (完整)中國象棋教案
評論
0/150
提交評論